Δ

1 Borel sets basics

Try these exercises if you're new to Borel sets of real numbers.

abla 1.1. Show that the Borel sets are closed under:

- finite unions;
- countable intersections;
- **translations:**

$$A \in \mathcal{B}_{\mathbb{R}} \qquad \Longrightarrow \qquad r + [A] := \{r + a | a \in A\} \in \mathcal{B}_{\mathbb{R}}$$

abla 1.2. Show that the following sets are Borel $(a, b \in \mathbb{R})$:

- = [a,b];
- $= \{a\};$
- $-(-\infty,a];$
- = [a,b);
- \blacksquare \mathbb{Q} : the rational numbers

Recall the *limit superior* and *limit inferior* operations on sequences of subsets $\vec{A} \subseteq X^{\mathbb{N}}$, thinking of them as subsets that vary in discrete time:

 $\limsup_{n\to\infty}A_n\coloneqq \bigcap_{k\in\mathbb{N}}\bigcup_{\ell\geq k}A_\ell\colon \text{ elements appearing } \textit{infinitely often in the sequence}; \\ \liminf_{n\to\infty}A_n\coloneqq \bigcup_{k\in\mathbb{N}}\bigcap_{\ell\geq k}A_\ell\colon \text{ elements appearing in } \textit{almost all the sequence}; \\ \lim_{n\to\infty}A_n\coloneqq \liminf_nA_n=\limsup_nA_n \text{ when the two limits coincide}.$

If the elements of the sequence are Borel, so are the two limits.

For example, use sequences 3-valued indexed by natural numbers $\vec{x} \in \{0, 1, \text{wait}\}^{\mathbb{N}}$ to represent possibly-blocking streams of bits. Let $A_n := \{\vec{x} | x_n \neq \text{wait}\}$. Then:

- \blacksquare lim sup_n A_n are the streams that always produce more output; while
- \blacksquare lim inf_n A_n are the streams that eventually stop blocking.

abla1.3. Practice manipulating limits of sets.

(Taken from Wikipedia.) Calculate the two limits for the following sequences:

$$\begin{array}{l} = \left\langle \left(-\frac{1}{n}, 1 - \frac{1}{n}\right)\right\rangle_n \\ = \left\langle \left(\frac{(-1)^n}{n}, 1 - \frac{(-1)^n}{n}\right)\right\rangle_n \\ = \left\langle \left\{\frac{i}{n} \middle| i = 0, \dots, n\right\}\right\rangle_n \end{array}$$

Show that:

$$\bigcap \vec{A} \subseteq \liminf \vec{A} \subseteq \limsup \vec{A} \subseteq \bigcup \vec{A}$$

- What happens to the two limits when $A_n \subseteq A_{n+1}$ and when $A_n \supseteq A_{n+1}$?
- This is the *indicator* function of a set $A \subseteq X$:

$$[- \in A] : X \to \{0, 1\}$$
$$[x \in A] := \begin{cases} x \in A : & 1 \\ x \notin A : & 0 \end{cases}$$

Show that:

2 REFERENCES

 $\nabla 1.4.$ Let's construct the *Cantor set*. For each $n \in \mathbb{N}$, let $\mathbf{Fin} n := \{0, \dots, n-1\}$ be the *n*-th cardinal. We define:

$$I: \coprod_{n=0}^{\infty} \operatorname{Fin} 2^n \to \left\{ [a, b] \middle| b - a = \frac{1}{3^n} \right\} \subseteq \mathcal{B}_{\mathbb{R}}$$

as follows, writing $I_k^n := I(\iota_n k)$ for each $n \in \mathbb{N}$ and $k \in \operatorname{Fin} 2^n$:

$$I_0^0 \coloneqq \left[0,1\right] \qquad I_{2k}^{n+1} \coloneqq \left[\min I_k^{n+1}, \frac{1}{3^{n+1}} + \min I_k^{n+1}\right] \qquad I_{2k+1}^{n+1} \coloneqq \left[\max I_k^{n+1} - \frac{1}{3^{n+1}}, \max I_k^{n+1}\right]$$

Each union $J_n := \bigcup_{k \in \mathbf{Fin} \, 2^n} I_k^n$ drops the middle thirds in the preceding interval sequence:

$$J_{0} \qquad \qquad I_{0}^{0} \qquad \qquad I_{0}^{1} \qquad \qquad I_{0$$

Later we'll define the *Lebesgue* measure as the unique σ -additive function $\lambda : \mathcal{B}_{\mathbb{R}} \to [0, \infty]$ that assigns to each interval its length.

- Show that $\langle \lambda J_n \rangle_n$ vanishes: $\lim_{n\to\infty} \lambda J_n = 0$, by calculating each number in the sequence.
- The Cantor set is the limit $\mathbb{G} := \lim_n J_n$. Show that $\lambda \mathbb{G} = 0$.
- Find a bijection $\mathbb{G} \cong \mathbb{T} := 2^{\mathbb{N}}$ where $2 := \mathbf{Fin} 2$.
- If you know some topology, equip $\mathbb{G} \hookrightarrow \mathbb{R}$ with the sub-space topology w.r.t. the open subsets of \mathbb{R} and $\mathbb{T} = \prod_{n \in \mathbb{N}} 2$ with the product topology w.r.t. the discrete topology on 2. Find a homeomorphism $\mathbb{G} \cong \mathbb{T}$.

References