Δ

Δ

6 Quasi-Borel spaces

Practice the basic definitions of qbses and their morphisms.

 ∇ 6.1. We can equip the real numbers with the structure of a qbs:

- The points are the real numbers.
- The random elements are the Borel measurable functions $\alpha : \mathbb{R} \to \mathbb{R}$

We'll write more succinctly below: $\mathbb{R} := \langle \mathbb{R}_{\perp}, \mathbf{Meas}(\mathbb{R}, \mathbb{R}) \rangle$.

- \blacksquare Check that \mathbb{R} satisfies the qbs axioms.
- Show that a function $f: \mathbb{R} \to \mathbb{R}$ is Borel measurable iff it is a qbs morphism.

 ∇ 6.2. Let X be a set. The *indiscrete qbs over* X has all functions as random elements:

$$X := \langle X, \mathbf{Set}(\mathbb{R}, X) \rangle$$

- \blacksquare Check that ${}_{\mathsf{Qbs}}^{\mathsf{X}}$ satisfies the qbs axioms.
- Let A be any qbs. Show that every function $f: A \to X$ is a qbs morphism:

$$f: A \to X$$

$$Qbs$$

 $abla \mathbf{6.3.}$ A qbs structure on a set X is a collection $\mathcal{R} \subseteq X^{\mathbb{R}}$ of functions closed under the qbs axioms. A function $\alpha : \mathbb{R} \to X$ is σ -simple when:

- The image $\alpha[\mathbb{R}]$ is countable; and
- For every $x \in \alpha[\mathbb{R}]$, the preimage $\alpha^{-1}[x] \subseteq \mathbb{R}$ is a Borel set.

Show the σ -simple functions are the smallest (w.r.t. set inclusion) qbs structure on X.

 $\nabla 6.4.$ Let A, B, C be obses. Show that the following functions are observables:

- Constant functions: for every $b \in {}^{L}_{\mathbf{Set}^{\mathsf{J}}}$, the function $(\lambda a.b) : A \to B$.
- Identity functions: id := $(\lambda a.a)$: $A \to A$.
- If $f: B \to C$ and $g: A \to B$ are qbs morphisms then so is the composition $f \circ g: A \to C$.
- **E**very σ -simple functions $\alpha : \mathbb{R} \to A$.

 ∇ 6.5. Let X be a set. The discrete qbs over X has the σ -simple functions as random elements:

$$\lceil \overset{\mathbf{Qbs}}{X} \rceil \coloneqq \big\langle X, \big\{\alpha: \mathbb{R} \to X \big| \alpha \text{ is σ-simple} \big\} \big)$$

By Ex.6.3, it is a qbs. Let A be any qbs. Show that every function $f: X \to {}^{L}_{\mathbf{Set}}^{A}$ is a qbs morphism:

$$f: \stackrel{\mathbf{Qbs}}{X} \to A$$

 ∇ **6.6.** Let A, B be isomorphic qbses. Show that their sets of points and their sets of random elements are in bijection:

$$A_1 \cong B_1$$
 $\mathcal{R}_A \cong \mathcal{R}_B$

2 REFERENCES

(Recall	${\rm from}$	Ex.2.7	that	two	spaces	A, B	are	isormor	phic	when	there	are	two	morp	phisms
$f: A \rightarrow$	B and	d g: B	$\rightarrow A$ t	that	are eacl	h oth	er's	inverses:	$f \circ$	$q = id_{I}$	and	$g \circ j$	f = id	(A.)	Δ

Δ

Δ

abla**6.7.** Show that the three spaces:

- \blacksquare \mathbb{R} , defined in Ex.6.1;
- $\mathbb{R}_{\mathbf{Qbs}}$, defined in Ex.6.2; and
- \blacksquare $^{\mathbf{Qbs}}$, defined in Ex.6.5

are pairwise non-isomorphic qbses.

abla 6.8. Let $f: A \to B$ be a qbs morphism. Show:

- \blacksquare f is surjective iff f is an epimorphism in **Qbs**.
- \blacksquare f is injective iff f is a monomorphism in **Qbs**.

 $abla \mathbf{6.9.}$ We have a functor $\mathbf{C_{Set}}^{-}: \mathbf{Qbs} \to \mathbf{Set}$ sending each qbs A to its set of points.

■ Define the action on morphisms, and show it is functorial and faithful.

Show:

- \cdot $\mathbf{Qbs} \to \mathbf{Set}$ has both a left and a right adjoint. What are the unit, counit, and mate representations of each adjunction?
- The functor ____ is *essentially surjective*: every set is isomorphic to a set of points of some space.
- $lue{}$ These left and right adjoints are fully-faithful, and neither essentially surjective. \triangle

References