8 Borel subspaces

The central notion in measure theory is that of a measurable subset — it is the defining concept of a measurable space. With quasi-Borel spaces, measurable subsets are a derived notion, but take a nonetheless central role.

- $\nabla 8.1$. A measurable, or Borel, subset in a qbs A is a subset $U \subseteq A$, such that the preimage under every random element $\alpha \in \mathcal{R}_A$ is a Borel subset of the reals: $\alpha^{-1}[U] \in \mathcal{B}$. We denote by \mathcal{B}_A the set of Borel subsets of A.
- Show that the measurable sets \mathcal{B}_A in a qbs A form a σ -algebra, and every random element is measurable w.r.t. this σ -algebra.
 - We denote the resulting measurable space by $A := \begin{pmatrix} A_1, B_2 \end{pmatrix}$, and call it the *free* measurable space over A.
- Show that $U \subseteq A$ is measurable iff its indicator function $[- \in U]: A \to 2$ is a qbs morphism from A into the discrete qbs on the two-element set.
- abla 8.2. Find the Borel sets of the discrete qbs ${}^{\circ}_{2}$ and the indiscrete qbs ${}^{\circ}_{\mathbf{Qbs}}$ on two elements. Generalise this result to the discrete and indiscrete qbses over any set X.
- $\nabla 8.3$. Show that the Borel subsets of $\mathbb R$ in the standard sense coincide with the measurable subsets of the qbs $\mathbb R$.
- abla 8.4. Let A be a qbs and $X \subseteq A$ be a subset.
- Show that if $U \subseteq A$ is Borel in A, then $U \cap X$ is Borel in the subspace X:

$$U \in \mathcal{B}_A \implies U \cap X \in \mathcal{B}_X$$

- Show that if X is itself a Borel subset, then $\mathcal{B}_X \subseteq \mathcal{B}_A$.
- \blacksquare Show that the previous clause may fail if X is not Borel.

The Borel subsets of a subspace can be quite different from the Borel subsets of its superspace. For example, we may have a Borel subset $V \in \mathcal{B}_X$ of the subspace that is not of the form $U \cap X$ for any Borel subset $U \in \mathcal{B}_A$ of the superspace.

Here's the intuition:

- \blacksquare A subset U in a qbs is measurable unless there is some random element that stops it from being measurable by mapping U onto a non-Borel inverse image.
- 'Wild' random elements may not factor through a subspace embedding $X \hookrightarrow A$.
- \blacksquare So a subspace may have more Borel subsets in X than in its superspace.

If you want to see this intuition playing out, here is how to construct a counter-example:

abla 8.5. Let $C_1 \subseteq \mathbb{R}$ be a non-Borel subset and $C_2 := \mathbb{R} \setminus C_1$ its complement, also non-Borel. Let $3 := \{0, 1, 2\}$ be a three-element set, and define two primitive random elements $\alpha_i : \mathbb{R} \to 3$:

$$\alpha_0 r \coloneqq \begin{cases} r \in C_1 : 0 \\ r \in C_2 : 2 \end{cases} \qquad \alpha_1 r \coloneqq \begin{cases} r \in C_1 : 1 \\ r \in C_2 : 2 \end{cases}$$

Take $A := \langle 3, \text{Cl}_{\text{qbs}} \{ \alpha_0, \alpha_1 \} \rangle$ to be the qbs over 3 with the smallest metaphorology (see Ex.7.9) containing α_0 and α_1 , and take $X := 2 \subseteq 3$.

Δ

- Show that $X, \{0\}, \{0, 2\} \notin \mathcal{B}_A$ are not Borel subsets in A.
- Show that if $\alpha \in \mathcal{R}_A$ is a random element in A, then either α is σ -simple or $2 \in \text{Im}(\alpha)$.

Δ

■ Show that $\{0\} \in \mathcal{B}_X$ is a Borel subset of the subspace X.

abla 8.6. Let $f: A \to B$ be a qbs morphism. Show that:

- The inverse image under f restricts to a function $\mathcal{B}_f : \mathcal{B}_B \to \mathcal{B}_A$.
- The underlying function f is a measurable function f : f

The collection of Borel sets has a universal property: it allows us to connect measurable spaces with quasi-Borel spaces as follows:

$\nabla 8.7.$ For a measurable space M, define its set of random elements by $\mathcal{R}_M := \mathbf{Meas}(\mathbb{R}, M).$

- Show that \mathcal{R}_M is a metaphorology, that is, $M_{\mathbf{Qbs}} := (M_{\mathbf{Set}}, \mathcal{R}_M)$ is a qbs.

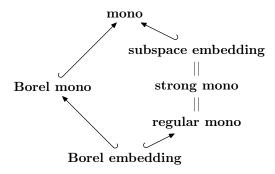
 For every measurable function $f: M \to N$ between measurable spaces, show that its
- For every measurable function $f: M \to N$ between measurable spaces, show that its underlying function is a qbs morphism $f: M \to N$ between measurable spaces, show that its underlying function is a qbs morphism $f: M \to N$ between measurable spaces, show that its
- Noticing that $\[-\]_{\mathbf{Qbs}} : \mathbf{Meas} \to \mathbf{Qbs} \]$ is a (faithful) functor, show that it has a left adjoint equipping a qbs with its set of Borel subsets: $\[\]^{\mathbf{Meas}}_{-} \to \[\]^{-}_{\mathbf{Obs}} \]$.

$$abla 8.8.$$
 The free qbs functor $abla^{\mathbf{Qbs}_{\neg}}$: Set $abla$ Qbs doesn't preserve countable products. $abla$ This point is a natural place to stop, but if you're having fun with this material, then

This point is a natural place to stop, but if you're having fun with this material, then the rest of this sheet studies the relationships between natural notions of 'subspace'.

- $m: A \rightarrow B$ Monomorphisms: injective qbs morphisms.
- $m:A\hookrightarrow B$ Subspace embedding: injective on elements and surjective on random-elements that factor through the image.
- $m: A \hookrightarrow B$ Borel injections: monomorphisms whose image is a Borel subset.
- $m:A \mapsto B$ Borel embeddings: subspace embeddings whose image is a Borel subset.

We establish their following mutual relationships, where all inclusions are proper:



$\nabla 8.9$. Place the following injections in the hierarchy of monomorphisms above:

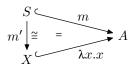
- The injection $\top := \lambda \star .1 : \lceil \mathfrak{1} \rceil \Rightarrow \lceil \mathfrak{Q}_{\mathsf{bs}} \rceil$
- The injection $\lambda x.x: \begin{bmatrix} \mathbf{Qbs} \\ 2 \end{bmatrix} \mapsto \underbrace{2}_{\mathbf{Qbs}}$.

Δ

- The injection $\lambda x.x: \begin{bmatrix} \mathbf{Qbs} \\ 2 \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{3} \\ \mathbf{Qbs} \end{bmatrix}$.
- The (subspace) inclusion $\lambda x.x: C \to \mathbb{R}$ where C is a non-Borel subset of \mathbb{R} .

 $\nabla 8.10$. Let $m: S \to A$ be a qbs morphism. Show that the following are equivalent:

■ m is a subspace embedding, i.e.: there is a subset $X \subseteq {}_{\llcorner}A_{\lrcorner}$ and an isomorphism $m' : B \xrightarrow{\cong} X$ satisfying:



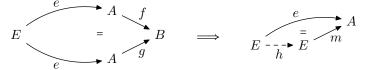
■ m is right-orthogonal to every empimorphism $e: B \twoheadrightarrow C$: for every commuting square as on the left, there is a unique morphism $h: C \to S$ commuting the triangles on the right:

(Morphisms that have this property are called strong monomorphisms.)

- m is an equaliser of some parallel pair of morphisms $f, g: A \to B$:
 - \blacksquare m equalises f and g:

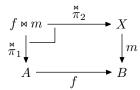
$$S \xrightarrow{m} A \xrightarrow{f} B$$

 \blacksquare and every equalising morphism $e: C \to A$ factors uniquely through m:



(Morphisms that have this property are called regular monomorphisms.) \triangle

 $\nabla 8.11$. A class of qbs-morphisms is *admissible* when, for every pullback square as follows, in which $m \in \mathcal{M}$ then necessarily $\overset{\bowtie}{\pi}_1 \in \mathcal{M}$:



Show that:

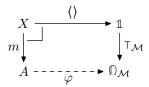
- Monomorphisms are admissible.
- Subspace embeddings are admissible.
- Borel embeddings are admissible.

Δ

 $\nabla 8.12$. Let \mathcal{M} be an admissible class. An \mathcal{M} -classifier is a pair $(\Omega_{\mathcal{M}}, \top_{\mathcal{M}})$ consisting of:

- \blacksquare a space $\Omega_{\mathcal{M}}$; and
- an \mathcal{M} -morphism $\top_{\mathcal{M}} : \mathbb{1} \to \Omega_{\mathcal{M}}$

such that for every \mathcal{M} -morphism $m: X \to A$, there is a unique qbs morphism $\varphi: A \to \Omega_{\mathcal{M}}$ for which the following square is a pullback square:

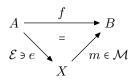


In this case, we denote this unique φ by $[-\epsilon m[X]]_{\mathcal{M}}: A \to \Omega_{\mathcal{M}}$. Show:

- \blacksquare If \mathcal{M} has a classifier in **Qbs**, then \mathcal{M} contains only subspace embeddings.
- The indiscrete Booleans $\langle {}_{\mathbf{Qbs}}^{2}, \underline{\mathbf{true}} \rangle$ form a subspace embedding classifier.
- The discrete Booleans $\langle \stackrel{\mathbf{Qbs}}{?}, \underbrace{\mathbf{true}} \rangle$ form a Borel embedding classifier.
- There are no monomorphism nor Borel monomorphism classifiers in **Qbs**.

A factorisation system $(\mathcal{E}, \mathcal{M})$ is a pair of classes of morphisms such that:

- \mathcal{E} and \mathcal{M} are closed under composition and contain all isomorphisms;
- every morphism $f: A \to B$ has an \mathcal{E} - \mathcal{M} factorisation:



Δ

Δ

• every morphism $m \in \mathcal{M}$ is right-orthogonal to every morphism $e \in \mathcal{E}$ (cf. Ex.8.10):

 $\nabla 8.13$. Show that $\langle epi, subspace embedding \rangle$ is a factorisation system.

 $\nabla 8.14$. A qbs morphism $e: A \to B$ is a *strong epimorphism* when the its action on random elements is surjective:

$$e \circ -: \mathcal{R}_A \twoheadrightarrow \mathcal{R}_B$$

Show that:

- The projection $\pi_1 : \mathbb{R}^2 \to \mathbb{R}$ is a strong epimorphism.
- Every strong epimorphism is surjective.
- Every map from a non-empty space into the terminal space $\langle \rangle : X \to \mathbb{1}$ is a strong epimorphism.

REFERENCES 5

■ If $f_i: A_i \to B_i$, $i \in I$, is a countable collection of strong epimorphisms, then their product	
$\prod_{i \in I} f_i : \prod_{i \in I} A_i \to \prod_{i \in I} B_i$ is a strong epimorphism.	\triangle
abla 8.15. Find an epimorphism that is not a strong epimorphism.	Δ
$\nearrow 8.16$. Show that $\langle \text{strong epimorphisms}, \text{mono} \rangle$ is a factorisation system.	Δ

References