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Abstract
Exercises on quasi-Borel spaces. I’ve prepared them to accompany my Marseille talk and
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higher-order measure theory with quasi-Borel spaces.
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About these exercises. Some exercises are there to fill gaps in the mathematical
development. Others can help you practice juggling the concepts involved. I also include
exercises for exploring independently a part of the theory that’s not directly required by
the talk, but you might find interesting. The Marseille and SPLV meetings bring together
practitioners and theoreticians with a mix of backgrounds. So I also include exercises that
might help give you enough for the purpose of this course. For those exercises I also point
what topics you should read further if you find this kind material fun. The exercises in Sec. 1–
Sec. 5 are such, and are often covered by most introductory courses in their respective areas.
So you should be able to tell at a glance whether you can skip them without losing the
thread. In that case, you might want to help others who are less familiar with this material.

Getting help and reporting mistakes. Please never hesitate to get in touch. You can
reach me directly by email. You may prefer to ask a question on the #qbs channel on the
SPLS Zulip server: spls.zulipchat.com. Unfortunately, these exercises undoubtly contain
mistakes. If you’ve found one, or if you’re stuck, please reach out!

ohad.kammar@ed.ac.uk
spls.zulipchat.com
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1 Borel sets basics

Try these exercises if you’re new to Borel sets of real numbers.

◸1.1. Show that the Borel sets are closed under:

finite unions;
countable intersections;
translations:

A ∈ BR Ô⇒ r + [A]B {r + a∣a ∈ A} ∈ BR ◿

◸1.2. Show that the following sets are Borel (a, b ∈ R):

[a, b];
{a};
(−∞, a];
[a, b);
Q: the rational numbers ◿

Recall the limit superior and limit inferior operations on sequences of subsets A⃗ ⊆ XN,
thinking of them as subsets that vary in discrete time:

lim supn→∞An B ⋂k∈N⋃ℓ≥k Aℓ: elements appearing infinitely often in the sequence;
lim infn→∞An B ⋃k∈N⋂ℓ≥k Aℓ: elements appearing in almost all the sequence;
limn→∞An B lim infn An = lim supn An when the two limits coincide.

If the elements of the sequence are Borel, so are the two limits.
For example, use sequences 3-valued indexed by natural numbers x⃗ ∈ {0, 1, wait}N to
represent possibly-blocking streams of bits. Let An B {x⃗∣xn ≠ wait}. Then:

lim supn An are the streams that always produce more output; while
lim infn An are the streams that eventually stop blocking.

◸1.3. Practice manipulating limits of sets.

(Taken from Wikipedia.) Calculate the two limits for the following sequences:
⟨(− 1

n
, 1 − 1

n
)⟩

n

⟨( (−1)n
n

, 1 − (−1)n
n
)⟩

n

⟨{ i
n
∣i = 0, . . . , n}⟩

n

Show that:

⋂ A⃗ ⊆ lim inf A⃗ ⊆ lim sup A⃗ ⊆⋃ A⃗

What happens to the two limits when An ⊆ An+1 and when An ⊇ An+1?
This is the indicator function of a set A ⊆X:

[− ∈ A] ∶ X → {0, 1}

[x ∈ A]B
⎧⎪⎪⎨⎪⎪⎩

x ∈ A ∶ 1
x ∉ A ∶ 0

Show that:



O. Kammar 3

⋃ A⃗ = {x ∈X ∣supn[x ∈ An] = 1}
lim sup A⃗ = {x ∈X ∣lim supn[x ∈ An] = 1}
lim inf A⃗ = {x ∈X ∣lim infn[x ∈ An] = 1}
⋂ A⃗ = {x ∈X ∣infn[x ∈ An] = 1} ◿

◸1.4. Let’s construct the Cantor set. For each n ∈ N, let Fin nB {0, . . . , n − 1} be the n-th
cardinal. We define:

I ∶
∞
∐
n=0

Fin 2n → {[a, b]∣b − a = 1
3n } ⊆ BR

as follows, writing In
k B I(ιnk) for each n ∈ N and k ∈ Fin 2n:

I0
0 B [0, 1] In+1

2k B [min In+1
k , 1

3n+1 +min In+1
k ] In+1

2k+1 B [max In+1
k − 1

3n+1 , max In+1
k ]

Each union Jn B ⋃k∈Fin 2n In
k drops the middle thirds in the preceding interval sequence:

[ ]
0 1I00

[ ]

1
3I10

[ ]

2
3 I11

[ ]

1
32I10

[ ]

2
32 I11

[ ]

7
32I12

[ ]

8
32 I13

J0

J1

J2

⋮ ⋮ ⋮ ⋮⋮

Later we’ll define the Lebesgue measure as the unique σ-additive function λ ∶ BR → [0,∞]
that assigns to each interval its length.

Show that ⟨λJn⟩n vanishes: limn→∞λJn = 0, by calculating each number in the sequence.
The Cantor set is the limit GB limn Jn. Show that λG = 0.
Find a bijection G ≅ TB 2N where 2B Fin 2.
If you know some topology, equip G ↪ R with the sub-space topology w.r.t. the open
subsets of R and T =∏n∈N 2 with the product topology w.r.t. the discrete topology on 2.
Find a homeomorphism G ≅ T. ◿

Exerc i ses
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2 Measurable spaces and functions

Try these exercises if you’re new to measure theory and are curious about it.

◸2.1. Show that each subset is Borel in each measurable space:

The diagonal {⟨r, r⟩ ∈ R2∣r ∈ R} in the Euclidean plane R2.
The 3-dimensional open ball {⟨x, y, z⟩ ∈ R3∣x2 + y2 + z2 < 1} in the Euclidean space R3.
The 2-dimensional sphere {⟨x, y, z⟩ ∈ R3∣x2 + y2 + z2 = 1} in the Euclidean space R3.

If you’re unsure how to approach the exercise, try the rest of this section first. ◿

◸2.2. Prove that the following functions over R are measurable, for all r ∈ R:

(r+)B λs.r + s

(r⋅)B λs.r ⋅ s ◿

We can organise measurable spaces and functions into a category called Meas: the
measurable spaces are the objects and the measurable functions are the morphisms between
these objects. You already know another category: Set. Its objects are sets and its
morphisms are functions between those sets. This course isn’t about category theory, but
we will take advantage of category theory to help us relate concepts that live in different
areas of mathematics. So if you never worked with categories before, you can use this course
to learn a bit more about categories. In that case, please take full advantage of myself and
your categorically-savvy course-mates!
If you are such a categorically-savvy person, you already covered the next few exercises in
the past and may want to skip to Ex.2.8.

◸2.3. Let’s spell out the category structure of Meas:

Objects are measurable spaces X, Y ;
Morphisms f ∶ X → Y are measurable functions of the same type.
Identities idX ∶ X →X are the identity functions λx.x of the same type.
The composition of f ∶ Y → Z and g ∶ X → Y is the composed function f ○ g ∶ X → Z.

Show the implicit statements in the last two clauses:

The identity function is a measurable functions idX ∶ X →X.
The composition is a measurable function f ○ g ∶ X → Z. ◿

Having spelled out the structure, we should now check that this structure is a category:

◸2.4. Show that:

identities are neutral w.r.t. composition — for all f ∶ X → Y : f ○ idX = f = idY ○ f ; and
composition is associative: f ○ (g ○ h) = (f ○ g) ○ h. ◿

You may have found 1-line proofs for each of the category axioms for Meas. This may feels
silly and tedious. It also usually means there’s a structural reason why those proofs work.
Here is one. There is a functor ⌞−⌟ ∶ Meas→ Set, that is, there is an assignment:

to each measurable space X, we assign set its set of points ⌞X⌟;
to each measurable function f ∶ X → Y , we assign its corresponding function between
the corresponding sets of points f ∶ ⌞X⌟→ ⌞Y ⌟;
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and this assignment respects identities and composition:

◸2.5. Show that:

⌞idX⌟ = id⌞X⌟ for every measurable space X; and

⌞f ○ g⌟ = ⌞f⌟ ○ ⌞g⌟ for every pair of composable measurable functions X
gÐ→ Y

fÐ→ Z. ◿

Equations between functions (and more generally, morphisms) leave the intermediate spaces
implicit in the background. We can mention both the spaces and the last two equations
diagrammatically:

X

X

⌞idX⌟ id⌞X⌟=

X

Y

Z

⌞f⌟

⌞g⌟

⌞g ○ f⌟ =

Vertices in the diagrams are objects, and directed edges are labelled by morphisms between
these objects. We’ll use a stretched equality notation to mark edges labelled by identity
morphisms, and often omit the actual label. Each face has a source and a sink, and two
paths from the source to the sink comprising of composable morphisms. The equality sign
on a face states an equality between the composion of the morphisms on the two paths
around the face. In the left diagram, it means ⌞idX⌟ = id⌞X⌟ and on the right diagram, it
means ⌞f ○ g⌟ = ⌞f⌟ ○ ⌞g⌟.
Let B and C be category structures, so they have objects, morphisms, identities, and
composition operators, but we make no assumptions that identities are neutral or
composition is associative. A functor F ∶ B → C is faithful when, for every pair of morphisms
of the same type f, g ∶ X → Y in B, we have: Ff = Fg Ô⇒ f = g. So the functorial action
on morphisms is injective.

◸2.6. Prove:

The functor ⌞−⌟ ∶ Meas→ Set is faithful.
Faithful functors reflect categories: if F ∶ B → C is faithful and C is a category, then B is
also a category.
Deduce that Meas is a category. ◿

This kind of ‘short-cut’ is not a short-cut at all: we replaced 3× 1-line proofs with the same
3 × 1-line proofs, merely done abstractly, and had to prove ⌞−⌟ is a functor, which involves
2 additional proofs.
My answer, and it may not be your answer, is that being able to relate concepts in Meas
and Set and how to transfer properties (like being a category) across these relationships is
a useful technique, and it’s worth learning. Here are a few more simple examples:

◸2.7. A morphism f ∶ X → Y in a category C is an isomorphism when there is a morphism
g ∶ Y →X such that f ○ g = idY and g ○ f = idX :

X X

Y Y
f

f
g

=
=

Exerc i ses
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Show the following:

Every functor F ∶ B → C preserves isomorphisms: if f ∶ X → Y is an isomorphism in B,
then Ff ∶ FX → FY is an isomorphism in C.
Faithful functors reflect isomorphism pairs: for all X

fÐ→ Y
gÐ→ X in B, if Ff and Fg are

each others’ inverses in C then f and g are each others’ inverses in B.
The faithful functor ⌞−⌟ ∶ Meas → Set does not reflect isomorphisms: there is a
measurable function f ∶ X → Y that is not an isomorphism, but its underlying function
f ∶ ⌞X⌟→ ⌞Y ⌟ is bijective. ◿

Like any formalism, categories takes practice to pick the vocabulary up and to use it
effectively, for example, only when it’s needed. In the rest of the course, every statement
involving categories will be accompanied by its non-categorical formulation, or may be safely
skipped. Whether or not you choose to use the language of categories is up to you. At the
very least, these statements offer another source of exercise for you.

◸2.8. Let V be a measurable space and A ⊆ ⌞V ⌟ any subset.

Prove that BA B {U ∩A∣U ∈ BV } is a σ-algebra.
Prove that if A is measurable, i.e., A ∈ BV , then BA = {U ∈ BV ∣U ⊆ A}.
Show that the inclusion is a measurable function:

i ∶ A ⊆ V

ixB x

Let f ∶ V →W be a measurable function then the restriction of f to A is measurable:

f ∣A ∶ A→W

f ∣A xB fx ◿

◸2.9. Prove that the following functions are measurable:

( 1
−) ∶ R≠0 → R≠0 where R≠0 B R ∖ {0}.
∣−∣ ∶ R→ R≥0 where R≥0 B [0,∞). ◿

◸2.10. Show that the inclusion i ∶ A ⊆ V is cartesian in the following way: for every
measurable space W and measurable function f ∶ W → V such that Im (f) ⊆ A there is a
unique measurable function h ∶ W → A with f = i ○ h:

⌞W ⌟

⌞A⌟ ⌞V ⌟
u

⌞i⌟

⌞f⌟

= Ô⇒

W

A V
h

i

f

=

in Set in Meas ◿

◸2.11. If you enjoyed the previous exercise, try generalising it. Let V be a measurable
space, A a set, and v ∶ A→ ⌞V ⌟ a function. Show that v has a cartesian lifting:

a measurable space v∗V ∈Meas, together with
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a measurable function v̇ ∶ v∗V → V ,

such that:

⌞v∗V ⌟ = A and ⌞v̇⌟ = v; and
for every measurable function f ∶ W → V and function u ∶ ⌞W ⌟→ ⌞A⌟, if the equation on
the left holds then there is a unique measurable function h ∶ W → v∗A satisfying ⌞h⌟ = u

and the eqution on the right:

⌞W ⌟

A ⌞V ⌟
u

v

⌞f⌟

= Ô⇒

W

v∗V V

h

v̇

f

=

in Set in Meas

This fact states that the functor ⌞−⌟ ∶ Meas → Set is a Grothendieck fibration. We won’t
use this fact directly in the sequel. ◿

◸2.12. Let X be a set.

Prove that every intersection of σ-algebras over X is a σ-algebra over X.

Let U ⊆ ℘A be a family of subsets of A. The σ-algebra σ(U) generated by U is the smallest
σ-algebra containing U :

σ(U)B⋂{B ⊆ ℘X ∣B is a σ-algebra and U ⊆ B}

Prove:

If U ⊆ V then σ(U) ⊆ σ(V).
If U is already a σ-algebra, then σ(U) = U .
Let V be a measurable space and f ∶ ⌞V ⌟→X any function. Prove that f ∶ V → ⟨X, σ(U)⟩
is measurable iff for every A ∈ U , we have f−1[U] ∈ BV . ◿

◸2.13. Let X be a set, and set {[X]}B {U ⊆X ∣U is countable or U∁ is countable} ⊆ ℘X.

Show that {[X]} is a σ-algebra over X. This σ-algebra is known as the countable-co-
countable σ-algebra.
Show that {[X]} = σ({{x}∣x ∈X}) is the σ-algebra generated by the singletons. ◿

If you know some transfinite induction, you might want a predicative definition of σ(U). In
that case, have a look at the (extensive!) bunch of exercises in Sec. A.

◸2.14. Let A ⊆ ⌞V ⌟ be a subset of a measurable space V . Show that if U generates the
σ-algebra of V , then U ′ B A ∩ [U] generates the σ-algebra of the subspace A. ◿

◸2.15. Given families of subsets U ⊆ ℘X and V ⊆ ℘Y , define their box σ-algebra:

U ⊗ V B σ {A ×B∣A ∈ U , B ∈ V}

Let U , V be two measurable spaces.

Exerc i ses
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Set U×V B ⟨⌞U⌟ × ⌞V ⌟,BU ⊗BV ⟩, and show that the cartesian projections π1 ∶ U×V → U

and π2 ∶ U × V → V are measurable.
Show that ⟨U × V , π1, π2⟩ is the categorical product: for every measurable space W and
pair of measurable functions f ∶ W → U and g ∶ W → V , there is a unique measurable
function ⟨f, g⟩ ∶ W → U × V such that:

U V

W

U × Vπ1 π2

f g
⟨f, g⟩

Show that if U generates BU and V generates BV , then U ⊗ V = BU×V . ◿

◸2.16. Let V⃗ = ⟨Vi⟩i∈I be an I-indexed family of measurable spaces.

Find their categorical product ∏i∈I Vi.
Find an example family and an I-indexed family of measurable subsets Ai ∈ BVi so that
the cartesian product ∏i∈I Ai is not a Borel set in the categorical product ∏i∈I Vi. ◿

◸2.17. A measurable space 0 is initial when there is a unique measurable function
[] ∶ 0 → V for every measurable space V . Similarly, a measurable space 1 is terminal when
there is a unique measurable function ⟨⟩ ∶ V → 1 for every measurable space V .
(These concepts make sense in every category.)

Show that Meas has exactly one initial space.
Show that Meas has multiple terminal spaces.
Show that terminal spaces are the product of an empty family of spaces. ◿

◸2.18. Show that each family of subsets generates the σ-algebra of the given space:

{(−∞, a)∣a ∈ R}, {(−∞, a]∣a ∈ R}, {(−∞, q)∣q ∈ Q}, {[a, b)∣a, b ∈ R} all generate BR.
{C ∩ In

k ∣n ∈ N, k ∈ Fin 2n} generate the Borel sets of the Cantor space G. What are the
corresponding subsets of TB 2N?
Show that the set of hemispheres generates the Borel sets of the unit 2-sphere. ◿

◸2.19. Let A be a set. The powerset ℘A is a σ-algebra on A (why?). Define the discrete
measurable space over A by ⌜A⌝B ⟨A,℘A⟩. Show:

For every measurable space V , each function f ∶ A→ ⌞V ⌟ is in fact a measurable function

f ∶ ⌜A⌝→ V .

The set {∅, A} is also a σ-algebra on A (why?). Define the indiscrete measurable space over
A by ⌞ A

Meas
⌟B ⟨A,{∅, A}⟩. Show:

For every measurable space V , each function f ∶ ⌞V ⌟→ A is in fact a measurable function
f ∶ V → ⌞ A

Meas
⌟. ◿

◸2.20. Let A be a set and V a measurable space.
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Given a function f ∶ B → A, a subset X ⊆ B is f -saturated when x ∈ X and fx = fy

imply y ∈X. Show that the f -saturated sets form a topology:
The empty ∅ set is f -saturated;
Arbitrary unions of f -saturated sets are f -saturated; and
Finite intersections of f -saturated sets are f -saturated.
(In fact, arbitrary intersections of f -saturated sets are f -saturated.)

Show that f ∶ V → ⌜A⌝ is measurable iff every f -saturated set is measurable.
Let B be a set and X0 ⊆ B a subset. We say that a subset X ⊆ B is X0-atomic when
X0 ⊆X or X0 ∩X = ∅. Show that the X0-atomic subsets are a topology: the empty set
is atomic, and finite intersections and arbitrary unions of atomic subsets are atomic.
Show that f ∶ ⌞ A

Meas
⌟ → V is measurable iff all the measurable subsets in V are Im (f)-

atomic. ◿

◸2.21. Let ⌜R⌝B ⟨R,℘R⟩ be the discrete measurable space over R, and R̃ be the countable-
cocountable measurable space over R. We’ll show that the diagonal {⟨r, r⟩∣r ∈ R} ⊆ ℘ (R × R)
is not a measurable subset of ⌜R⌝ × R̃.
Define the following predicate Φ ⊆ ℘ (R × R). Given K ⊆ R×R, then Φ(K) holds when there
is a countable sequence of real numbers b⃗ ∈ RN such that for every x ∈ R, if there is some
y0 ∉ {bn∣n ∈ N} with ⟨x, y0⟩ ∈K, then for all y ∉ {bn∣n ∈ N} we have ⟨x, y⟩ ∈K.
The intuition behind Φ: there is a countable collection of equality constraints on the second
component we need to check in order to decide whether a pair is in K. Prove the following.

Φ(K) iff there is some b⃗ ∈ RN and a function φ ∶ R→ 2N+1 such that the indicator function
of K is given by:

[(x, y) ∈K] =
⎧⎪⎪⎨⎪⎪⎩

∃n.y = bn, φ(x, ι1n) = true ∶ true
otherwise: φ(x, ι2⋆)

The diagonal {⟨r, r⟩ ∈ R × R∣r ∈ R} is not in Φ.
Φ(A ×B) for every countable and cocountable subset B ⊆ R.
Φ is closed under countable unions and countable intersections.
For every measurable subset K ∈ B⌜R⌝×R̃, both ΦK and ΦK∁.
Deduce that the diagonal is not a measurable set in ⌜R⌝ × R̃.

(If you find a shorter proof that the diagonal is not measurable, please let me know!) ◿

Exerc i ses
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3 Basic category theory

We now have enough examples to introduce three important organising concepts from
category theory: natural transformations, universal arrows, and adjunctions. This section is
aimed at readers who want to take this opportunity to make first steps in category theory,
but categorically-savvy readers might also learn some facts about the category of measurable
spaces. There’s too much material in this section for one sitting, so I recommend reading
the first part of each subsection, and referring back to the more advanced parts if you need
them later.

3.1 Natural transformations
Ex.2.15 constructs the product of two measurable spaces in the category of measurable
spaces. We can record the fact that we can construct this product generally by organising
products into a functor. The codomain of this functor is Meas, and its domain is the
following.

◸3.1. Let Meas2 be the following category:

Objects are pairs X⃗ = ⟨X1, X2⟩ of measurable spaces.
Morphisms f⃗ ∶ X⃗ → Y⃗ are pairs of measurable maps between the corresponding spacse
f⃗ = ⟨f1 ∶ X1 → Y1, f2 ∶ X1 → Y1⟩.

There’s nothing specific about Meas here — we may as well replace it with two generic
categories C1,C2 to construct the product category C1 × C2.

Spell out the objects and morphisms of C1 × C2, define identities and composition, and
show the resulting structure is a category.
Define and prove functorial the two projection functors πi ∶ C1 × C2 → Ci.
Let C be a category. Define and prove functorial the diagonal functor ∆ ∶ C → C × C. ◿

Binary products organise into a functor (×) ∶ Meas2 →Meas:

The action on objects maps each X⃗ to the binary product X1 ×X2.
The action on morphisms maps each f⃗ ∶ X⃗ → Y⃗ to:

f1 × f2 B ⟨X1 ×X2
π1Ð→X1

f1Ð→ Y1, X1 ×X2
π2Ð→X2

f2Ð→ Y2⟩ ∶ X1 ×X2 → Y1 × Y2

(We apply this functor to pairs of objects and morphisms in infix notation.)

◸3.2. Show that f1 × f2 is the unique measurable map satisfying for both i = 1, 2:

X1 ×X2

Y1 × Y2

Xi

Yi

f1 × f2 fi

πi

πi

=

◿
The equations in the previous exercise characterise the functorial action of the product, and
the concept that organises them is that the projections πX⃗

i ∶ X1 × X2 → Xi collect into a
natural transformation πi ∶ (×)→ πi.
In general, let F, G ∶ B → C be functors. The structure of a natural transformation α ∶ F → G,
called a transformation from F to G is an assignment:
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for each object X ∈ B, a morphism αX ∶ FX → GX

The naturality property that makes a transformation a natural transformation is:

for every morphism f ∶ X → Y in B, we have:

FX GX

FY GY

αX

αY

Ff Gf=

◸3.3. Let F, G ∶ Meas2 →Meas are functors whose action on objects maps each X⃗ to the
product X1 ×X2. Show that if both projections are natural, i.e., for each i = 1, 2:

πi ∶ F → πi πi ∶ G→ πi

then F and G have the same action on morphisms. ◿

◸3.4. Define the structure and prove the required properties of the following:

The identity functor IdC ∶ C → C for every category C.
The diagonal natural transformation ∆ ∶ IdMeas → (×). ◿

◸3.5. Let Pred Meas↪Meas2 be the subcategory of Set2:

Objects are those pairs X⃗ in which:
the points of X1 are points in X2: ⌞X1⌟ ⊆ ⌞X2⌟
the σ-algebra on X1 is the subspace σ-algebra we defined in Ex.2.8.

So we have a measurable inclusion morphisms we write as i ∶ X1 ↪X2.
Morphisms are those pairs f⃗ ∶ X⃗ → Y⃗ for which:

X1 X2

Y1 Y2

i

i

f1 f2= (1)

By stating it is a subcategory, we implicitly define the identities and composition in
Pred Meas by the identities and composition in Meas2.

Show that identities and composition are well-defined: identities satisfy the compatibility
equation (1).
Spell out the action of an inclusion functor Pred Meas↪Meas2, and show it is indeed
functorial, and moreover faithful.
Since faithful functors reflect categories (Ex.2.6), Pred Meas is a category.
Find functors dom, cod ∶ Pred Meas →Meas that make the subspace inclusions into a
natural transformation i ∶ dom → cod. ◿

Let B,C be categories. The category CB as functors as objects and natural transformations
α ∶ F → G between them as morphisms.

◸3.6. Define identities and composition in CB, faithful evaluation functors eval(−, X) ∶
CB → C for each X ∈ B, and a faithful diagonal functor ∆ ∶ C → CB. ◿

Exerc i ses
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◸3.7. Let F, G ∶ B → C be functors. Show that a natural transformation α ∶ F → G is an
isomorphism in CB iff each eval(α, X)B αX ∶ FX → GX is an isomorphism in C. ◿

Every category structure C has an opposite category structure Cop whose objects are the
same, but a morphism from X to Y in Cop is a morphism from Y to X in C. We will never
write morphisms f ∶ X →Cop Y in Cop directly, but instead write them as f ∶ X ← Y .

◸3.8. Show that a category structure C satisfies the defining properties of a category iff its
opposite Cop satisfies them. ◿

◸3.9. Let C be a category.

Show that f ∶ X → Y is an isomorphism in C iff f ∶ Y ←X is an isomorphism in Cop.
Show that 1 is a terminal object of C iff 1 is an initial object of Cop. ◿

Category theorists use the adverb ‘just’ for this kind of process of unfolding all the structure
and comparing the required properties of two concepts. So:

an isomorphism in Cop is just an isomorphism in C;
an initial object in Cop is just a terminal object in C;
a natural isomorphism is just a natural transformation consisting of isomorphisms;
(Cop)op is just C;

and so on. Unlike its colloquial usage, the technical meaning of ‘just’ doesn’t imply
this process is simple, obvious, or straightforward. Category theorists tend to forget this
difference, which casual listeners sometimes find patronising. If you talk to someone who
might not know the technical meaning of ‘just’, try using the more neutral ‘amounts to’.
We define a contravariant functor F from B to C to be a functor F ∶ Bop → C.

◸3.10. Show that contravariant functors:

Reflect categories when faithful.
Preserve isomorphisms.
Reflect isomorphism pairs when faithful. ◿

◸3.11. A functor H ∶ B → C is fully-faithful when its action on morphisms is bijective: for
every morphism g ∶ HX →HY there is a unique morphism f ∶ X → Y such that Hf = g.
Show that fully-faithful functors lift isomorphic objects: if H ∶ B → A is fully-faithful and
g ∶ HA

≅Ð→ HB is an isomorphism, then there is an isomorphism f ∶ A
≅Ð→ B and H maps it

to g. ◿

We’ll now define the most important functor in category theory. Let C be a locally small
category: each collection of morphisms from X to Y is a set C(X, Y ) in our universe of sets.
We then have the following functor HomC ∶ Cop × C → Set:

Its action on objects sends a pair of objects to the set of morphisms between them:
HomC ⟨X, Y ⟩B C(X, Y ).
Its action on morphisms precomposes the contravariant argument and postcomposes the
covariant argument:

HomC ⟨f ∶ X1 ←X2, g ∶ Y1 → Y2⟩ ∶ (X1
uÐ→ Y1)↦ (X2

fÐ→X1
uÐ→ Y1

gÐ→ Y2)
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We’ll write C(x, y) for HomC ⟨x, y⟩ for morphisms as well as objects. This notation matches
previous conventions, like the product functor, where we used the same notation for
morphisms and objects.

◸3.12. Show that HomC is a functor. Show that its curried version yC ∶ C → SetC
op

is also a functor. It is called the Yoneda embedding. Show that the alternative currying
y′ ∶ Cop → SetC is just yCop ∶ Cop → Set(C

op)op
for the opposite category. ◿

Because the iterated superscripts are hard to read, you’ll see the notation Ĉ B SetC
op

.

◸3.13. Let F ∶ Cop → Set be a functor from a small category C: a category with a set of
objects and a set of morphisms.

Type-check that λx.HomSetCop ⟨yx, F ⟩ ∶ Cop → Set, which we may write as λx.Ĉ(yx, F ).
Prove the Yoneda lemma: the operation ‘evaluate each natural transformation at the
identity morphism’ is a natural isomorphism Υ ∶ (λx.Ĉ(yx, F )) ≅Ð→ F .
Show that y ∶ C→ Ĉ is fully-faithful. ◿

3.2 Universality and representability
Universality lets us pin-point what makes a construction special. Let H ∶ B → C be a functor,
and A ∈ C an object. An arrow from A to H is a pair ⟨X, f⟩ consisting of:

an object X in B; and
a morphism f ∶ A→HX in C.

An arrow morphism h ∶ ⟨X, f⟩→ ⟨Y, g⟩ is a morphism h ∶ X → Y satisfying:

A

HX

HY

f

g
Hh=

Arrows from A to H and their morphisms form a category. A universal arrow from A to H

is an initial object in this category.

◸3.14. Define the remaining structure of the category of arrows from A to H. Define a
faithful functor from this category structure to B. ◿

◸3.15. Let A be a set. Find a universal arrow from A to the functor ⌞−⌟ ∶ Meas→ Set. ◿

◸3.16. Let V be a measurable space. Find a universal arrow from V to the functor
cod ∶ Pred Meas→Meas you defined in Ex.3.5. ◿
We define arrows from H to A similarly, as pairs ⟨X, f⟩ where f ∶ HX → A, and morphisms:

A

HX

HY

f

g
Hh =

A universal arrow from H to A is then a terminal arrow in this category.

◸3.17. Find a universal arrow from the functor ⌞−⌟ ∶ Meas→ Set to a set A. ◿

◸3.18. Find a universal arrow from the diagonal functor ∆ ∶ Meas →Meas2 to a pair of
measurable spaces X⃗. ◿

Exerc i ses
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◸3.19. Let A be a set. A global geometry G on A is a family of sets G ⊆ ℘A. A globally
geometric space X is then a pair ⟨⌞X⌟,GX⟩ consisting of a set ⌞X⌟ of points and a global
geometry GX ⊆ ℘⌞X⌟. Given two globally geometric spaces X, Y , a globally geometric
morphism f ∶ X → Y is a function f ∶ ⌞X⌟→ ⌞Y ⌟ such that, for every subset in the codomain
geometry U ∈ GY , its inverse image is in the source geometry f−1[U] ∈ GX .

Define the structure of a category Geom whose objects are globally geometric spaces
and their morphisms, and a faithful functor ⌞−⌟ ∶ Geom → Set.
Let A be a set. Find universal arrows from A to ⌞−⌟ and from ⌞−⌟ to A.
Each σ-algebra is a global geometry, yielding a faithful functor ⌞ −

Geom
⌟ ∶ Meas↪Geom.

Let X be a globally geometric space. Find a universal arrow from ⌞ −
Geom

⌟ to X. ◿

◸3.20. Let A be a set. Let RelA be the following category:

objects are binary relations R over A, i.e.: R ⊆ A ×A; and
there is a unique morphisms f ∶ R → S when R ⊆ S.

Let ⌞−⌟ ∶ EquivA ↪RelA be the subcategory consisting of the equivalence relations and its
associated faithful functor.
For every relation R, find a universal arrow from R to ⌞−⌟. ◿

Let I, C be categories. A diagram of shape I in C is a functor D ∶ I → C. A morphism
α ∶ D → E between diagrams is a natural transformation. The functor category CI then
serves as the category of diagrams and their morphisms.
A cone for a diagram D ∶ I → C is a pair ⟨C, c⟩ consisting of:

an object C ∈ C, called the vertex of the cone; and
a natural transformation c ∶ ∆C → D, i.e., an assignment for each i ∈ I of a morphism
C →Di in C such that for every u ∶ i→ j in I, we have:

C

Di

Dj

ci

cj

Du=

A cone morphism h ∶ ⟨B, b⟩→ ⟨C, c⟩ is a morhpism h ∶ B → C satisfying, for all i ∈ I:

C

Di

B
ci

bi

h

=

◸3.21. Show that a D-cone is just an arrow from the diagonal functor ∆ ∶ C → CI to the
diagram D ∈ CI . ◿

◸3.22. Find a category 2 so that the diagram category Meas2 is just Meas2. ◿
A limiting cone is a universal cone, that is, a universal arrow from ∆ to D. Its vertex is
called a limit of the diagram. Similarly, a colimiting cocone is a universal arrow from D to
∆, and its vertex is called the colimit of the diagram.

◸3.23. Show that a terminal object is just a limiting cone for the diagram from the category
with no objects and no morphisms. ◿
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◸3.24. Show that a limit in RelA is just the intersection of the relations in the diagram,
and a colimit is just the union. ◿

◸3.25. Let I be the category with two objects 0, 1 and four morphisms:

The two identities: id0, id1; and
f ∶ 0→ 1 and g ∶ 1→ 0.

Define composition to satisfy the neutrality axioms whenever an identity is involved, and in
the remaining cases define:

f ○ g B id1 g ○ f B id0

Define a faithful functor U ∶ I → Set sending 0 to {0} and 1 to {1} and deduce I is
indeed a category.
Show that a diagram D ∶ I → C is just an isomorphism pair. ◿

◸3.26. Let D ∶ I → Set be a small diagram — a diagram whose domain I is a small
category.

Define LB {x⃗ ∈∏i∈I Di∣∀u ∶ i→ j ∈ I.xj =Duxi} and ℓi ∶ L→Di to be the restriction of
the i-th component projection. Show that ⟨L, ℓ⟩ is a limiting cone for D.
Let R to be the relation on the disjoint union ∐i∈I Di given by ⟨i, x⟩R ⟨j, y⟩ when there
is some u ∶ i → j with Dux = y. Let ≡R be the reflexive-transitive-symmetric closure of
≡R. Define a cocone by setting C B∐i∈I Di/ ≡R and ci mapping each x ∈ Di to [⟨i, x⟩],
the ≡R-equivalence class of ⟨i, x⟩. Show that ⟨C, c⟩ is a colimiting cocone for D. ◿

Let D be a class of diagrams in a category C. We say that C is D-complete when it has
limit cones for all diagrams in D, and D-cocomplete when it has colimiting cocones for all
diagrams in D. By default, D is the class of all small diagrams. The category Set is therefore
complete and cocomplete. We can often use this fact to transfer limits and colimits along
functors into other categories.
Let H ∶ B → C be a functor, and D ∶ I → B a diagram. If c ∶ ∆C → D is a D-cone, then
Hc ∶ ∆HC →H ○D is an H ○D-cone. We say that H:

preserves D-limits when, for every limiting cone ⟨L, ℓ⟩, the cone ⟨HL, Hℓ⟩ is limiting for
H ○D;
reflects D-limits when, for every D-cone ⟨L, ℓ⟩, if the cone ⟨HL, Hℓ⟩ is H ○D-limiting,
then ⟨L, ℓ⟩ is limiting (and then H preserves this limit); and
lifts D-limits when, for every H ○D-cone ⟨L′, ℓ′⟩ there is a D-limiting cone ⟨L, ℓ⟩ and a
cone isomorphism ⟨HL, Hℓ⟩ ≅ ⟨L′, ℓ′⟩.

We extend these to a class of diagrams D by saying that H preserves/reflects/lifts D-limits
of the class if it does so for each diagram in D. Finally, we say that:

H is D-continuous when it preserves D-limits;
H generates D-limits when it preserves and lifts D-limits; and
H creates D-limits when it preserves, reflects, and lifts D-limits.

We define analogous concepts for colimits.

◸3.27. Show that ⌞−⌟ ∶ Meas→ Set lifts limits, but does not reflect limits. ◿

Exerc i ses
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◸3.28. Show that if H ∶ B → C lifts D-limits and C is D-complete, then B is also D-complete
and H generates D-limits. Deduce that Meas is complete. ◿

◸3.29. Show that the Yoneda embedding preserves limits. ◿
Let C be a locally small category. A functor F ∶ Cop → Set is representable when there is some
object X and a natural isomorphism ρ ∶ yX

≅Ð→ F . We call the object X the representing
object and the isomorphism ρ the representation.

◸3.30. Let H ∶ B → C be a functor between locally small categories. Show that a
universal arrow ⟨X, f⟩ from A to H is just a representation ρ ∶ yBopX

≅Ð→ λx.C(A, Hx), and
the translation between f and ρ is given by the Yoneda lemma:

f ∈ C(A, HX) ΥX←Ð→ ρ ∈ B̂op(yX, λx.C(A, Hx)) ◿

Solution. A representation ρ is a family of bijections, natural in Y , between two hom-sets:

AÐ→HY

X Ð→ Y
(2)

The Yoneda lemma gives an arrow f B Υρ. The naturality of ρ implies that for all h ∶ X → Y :

B(X,X) C(A,HX)

C(A,HY )B(X,Y )

ρX

ρY

yBophB(X,h) C(A,Hh)= =

idX ρX(idX) = ΥXρC f

ρY h =Hh ○ fh ○ idX = h

ρX

ρY

B(X,h) C(A,Hh)=

So the bijection ρY acts by λh.Hh ○ f , and that’s the universality of the arrow ⟨X, f⟩.
Conversely, a universal arrow ⟨X, f⟩ induces a bijective correspondences as in (2) given by
ρY (h ∶ X → Y )BHh○f = C(A, Hh)f = (Υ−1

X f)Y h, and so ρ = Υ−1
X f , and also Y -natural. ◢

3.3 Adjunctions
The input to the universal arrow concept in the previous section is a functor and an object
A of C. By currying the object, we arrive at the concept of an adjoint:

Let U ∶ B → C be a functor. A left adjoint to U , ⟨FA ∈ B, ηA ∶ A→ U(FA)⟩A∈C , is an
assignment, for each object A ∈ C, of a universal arrow ⟨FA, ηA⟩ from A to U .
Similarly, let F ∶ C → B be a functor. A right adjoint to F , ⟨UX, εX ∶ F (UX)→X⟩X∈B,
is an assignnment, for each object X ∈ B, of a universal arrow ⟨UX, εX⟩.

So an adjoint is a simultaneous assignment of universal arrows.
So far we’ve seen plenty of examples of adjoints:

◸3.31. Show that the functors ⌞−⌟ ∶ Meas → Set and ⌞−⌟ ∶ Geom → Set have both a left
and right adjoints. ◿

◸3.32. Show that the functor ⌞ −
Geom

⌟ ∶ Meas↪Geom has a right adjoint. ◿
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◸3.33. Show that the functor ⌞−⌟ ∶ EquivA ↪RelA has a left adjoint. ◿

◸3.34. Show that the diagonal functor ∆ ∶ Meas→Meas2 has a right adjoint. ◿

◸3.35. Show that every diagonal functor ∆ ∶ Set → SetI for a small category I, has both
a left and a right adjoint. Every diagonal functor ∆ ∶ Meas →MeasI for a small category
I has a right adjoint. ◿
Let U ∶ B → C be a functor with a right adjoint ⟨F, η⟩. By Ex.3.30, each universal arrow
⟨FA, ηA⟩ comes from a representation ρA ∶ y(FA) ≅Ð→ λx.C(A, Ux), so we have a collection
of bijections, indexed by both A ∈ C and X ∈ Y :

ρA,X ∶ B(FA, X) ≅Ð→ C(A, UX) ρA,X ∶ (FA
hÐ→X)↦ (A ηAÐ→ U(FA) UhÐÐ→ UX)

It is natural in X, but if we want it to be natural in A, we need to equip F with a functorial
action on morphisms.

◸3.36. Show that there is exactly one action on morphisms such that:

F ∶ C → B is a functor; and
ρ ∶ (λx, y.B(Fx, y)) ≅Ð→ (λx, y.C(x, Uy)) is a natural transformation (and so forms a
natural isomorphism). ◿

An adjunction from C to B is a tuple ⟨F, G, ρ⟩ consisting of:

Two functors F ∶ C → B, the left adjoint and G ∶ B → C, the right adjoint; and
A natural isomorphism ρ ∶ (λx, y.B(Fx, y)) ≅Ð→ (λx, y.C(x, Uy)) called the mate bijection.

By Ex.3.36, each adjoint extends to a unique adjunction. This process exhausts all
adjunctions. Indeed, in an adjunction, each bijection ρA ∶ yFA

≅Ð→ λy.C(A, y) is a
representation. By Ex.3.30, setting ηA B ΥF AρA ∶ A → UFA gives a simultaneous
assignment ⟨FA, ηA⟩A∈C of universal arrows from A to U , i.e., a left adjoint to U . Using a
similar argument for right adjoints, we have that an adjunction is just an adjoint (left or
right) to the appropriate functor in the adjunction.
Given an adjunction, as we’ve seen, the universal arrows are given by:

ηA B ρA,F AidF A = ΥF A(ρA) εX B ρ−1
UX,X idUX = ΥUX(ρ−1

X )

◸3.37. Show that η ∶ IdC → U ○ F and ε ∶ F ○ U → IdB are natural. Can you do it by
appealing to the naturality of the Yoneda lemma? ◿

Solution. We’ll do so for η, the proof for ε is similar. We need to show, for f ∶ A→ B in C:

A UFA

UFBB

f UFf

ηA

ηB

=

The Yoneda lemma in question is the natural isomorphism:

Υ ∶ (λx.B̂(yx, λy.C(A, Uy))) ≅Ð→ (λx.C(A, Ux)

Exerc i ses
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B̂(yFA, λy.C(A,Uy)) C(A,UFA)

C(A,UFB)B̂(yFB, λy.C(A,Uy))

ρA ηA

ηB ○ f = UFf ○ ηA
(λh.ρA(h ○ Ff)) =

↑
ρ-naturality

(λh.ρBh ○ f)

ΥFA

ΥFB

B̂(y(Ff), λy.C(A,Uy)) C(A,UFf)=

as we wanted. ◢

We have εF A ○ FηA = ρ−1
F A(ηA) = idF A and similarly UεX ○ ηUX = idUX , and we arrived at

the following concept.
A formal adjunction ⟨F, G, η, ε⟩ consists of:

Two functors F ∶ C → B, the left adjoint and G ∶ B → C, the right adjoint; and
Two natural transformations η ∶ IdC → U ○ F , the unit, and ε ∶ F ○U → IdB, the counit.

satisfying the following triangle equalities, for every X ∈ B and A ∈ C:

UX UX

UFUXFA FA

FUFA

FηA εFA

= ηUX UεX
=

The term ‘formal’ here is used in the Australian sense: it involves categories,
functors (morphisms between categories), and natural transformations (morphisms between
functors), and so can be generalised to ‘formal’ categories that have 0-cells (objects), 1-cells
(morphisms between 0-cells), and 2-cells (morphisms between 1-cells).
We’ve shown that every adjunction gives rise to a formal adjunction. The mate isomorphism
ρ is determined by η as:

ρA,XhBHh ○ ηA = (Υ−1
F AηA)Xh (3)

Therefore, this formal adjunction is determined uniquely. To see this process is exhaustive,
take any formal adjunction, and set ρA B Υ−1

F AηA ∶ yFA → λy.C(A, Uy) using the Yoneda
lemma as in (3). Then ρA is natural.

◸3.38. Show that ρA is an isomorphism. ◿

Solution. Define ρ−1
A,Xh′ B εX ○ Fh′ and show it is inverse to ρA,X by direct calculation.

For example, take any h′ ∶ A→ UX in C, and show that h = ρA,X(ρ−1
A,Xh) = UεX ○UFh′ ○ η:

A UFA

UFUXUX

UX

ηA

UFh′

Uε

h′

h′

ηUX

id
=

η-nat

=

triangle
=
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as we wanted. ◢

Since ρA is a natural isomorphism, by Ex.3.30, we have a universal arrow ⟨FA, ηA⟩ from A

to U , so we have a left adjoint to U , hence an adjunction.

◸3.39. Check that the resulting formal adjunction is our given formal adjunction. ◿
Summarising, a formal adjunction is just an adjunction, which in turn is both just a left
adjoint F to a functor U ∶ B → C and just a right adjoint U to a functor F ∶ C → B. We
write ρ, ⟨η, ε⟩ ∶ F ⊣ U ∶ B → C where ρ is the mate isomorphism of the adjunction, and η is
the unit and ε the counit of the formal adjunction.

◸3.40. Let ⟨η, ε⟩ ∶ F ⊣ U ∶ B → C and let H ∶ C → D. Show that if ⟨A, v⟩ is a universal arrow
from V to H, then ⟨FA, V

vÐ→HX
HηAÐÐ→HU(FX)⟩ is a universal arrow from V to H ○U .

Deduce that given two composable adjunctions F1 ⊣ U1 and F2 ⊣ U2:

A B C

F2

U2

F1

U1

� �

their composition is also an adjunction F1 ○ F2 ⊣ U2 ○U1. ◿

◸3.41. Show that right adjoints preserve limits and left adjoints preserve colimits. ◿

Exerc i ses
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4 Aumann’s theorem

These exercises explore concepts derived from and around Aumann’s theorem. We will not
need intimate knowledge of the Borel hierarchy, but if you’re curious about it, the exercises
in Sec. A explore it in further detail through. This section is also an opportunity to learn
and practice some category theory.
Let X, Y be measurable spaces. An exponential of Y by X is a pair ⟨Y X , eval⟩ consisting
of a measurable space Y X and a measurable function eval ∶ Y X ×X → Y such that for every
measurable space Γ and measurable function f ∶ Γ×X → Y there exists a unique measurable
function λf ∶ Γ→ Y X satisfying:

Γ ×X

Y X ×X Y

Γ

Y X

λf (λf) × idX
f

eval

=

This definition is a standard category-theoretic notion — we could replace ‘measurable space’
by ‘object’ and ‘measurable function’ by ‘morphism’, as long as the category has products
with X.

◸4.1. Let I be a countable set and Y a measurable space. Show that we can give an
exponential of Y the discrete measurable space over I by the product Y ⌜I⌝ B∏i∈I X.
Where in your proof do you use I’s countability? ◿

◸4.2. Let ⟨Y X , eval⟩ be an exponential in Meas.

Find a bijection between the points in Y X and the measurable functions from X to Y ,
that is: ⌞Y X⌟ ≅Meas(X, Y )
Show that there is a σ-algebra on Meas(X, Y ) such that the set-theoretic evaluation
function eval ∶ Meas(X, Y ) ×X

⟨f,x⟩↦f(x)
ÐÐÐÐÐÐ→ Y is measurable. ◿

◸4.3. Let I be a set.
Let ⟨Xi⟩i∈I be an I-indexed family of measurable spaces. Their coproduct ⟨∐i∈I Xi, ι−⟩
consists of the measurable space ∐i∈I Xi whose:

points are pairs of a tag from I and a point from Xi:

⌞∐
i∈I

Xi⌟B∐
i∈I
⌞Xi⌟B⋃

i∈I
{i} × ⌞Xi⌟

measurable subsets are unions ⋃i∈I {i} ×Ui of arbitrary I-indexed family of measurable
subsets Ui ∈ BXi .

and for each i ∈ I, ιi ∶ Xi
x↦⟨i,x⟩
ÐÐÐÐ→∐i∈I Xi.

Prove:

U ⊆∐i∈I⌞Xi⌟ is measurable iff ι−1
i [U] is measurable for all i ∈ I.

The σ-algebra axioms hold in the coproduct, and every injection is measurable.
For every I-indexed family of measurable functions fi ∶ Xi → Y there is a unique
measurable function [fi]i∈I ∶∐i∈I Xi → Y such that:
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∐
i∈I

XiXi

Y

ιi

[fi]i∈Ifi

=

Find, and show the uniqueness of, the functorial action that makes the coproduct
construction into a functor ∐I ∶ MeasI →Meas and all the coproduct injections natural
transformations ιi ∶ πi →∐I . ◿

◸4.4. We say that a space X is exponentiable when there is an exponential Y X for every
measurable space Y .

Let I be a set. Show that if, for every measurable space Γ, the following canonical map
is a measurable isomorphism: ∐i∈I Γ

[⟨idΓ,i⟩]i∈IÐÐÐÐÐÐ→ Γ × ⌜I⌝, then ⌜I⌝ is exponentiable, and
⟨∏i∈I Y , ⟨x⃗, i⟩↦ xi⟩ is the exponential ⟨Y ⌜I⌝, eval⟩ of Y by ⌜I⌝.
Show, for every countable set I, that ⌜I⌝ is exponentiable.
Show that if X is exponentiable, then for every I-indexed family of spaces, the canonical
map ∐i∈I X →X × ⌜I⌝ is a measurable isomorphism. ◿

Aumann’s theorem shows that Meas cannot have an exponential for R by R by inspecting
the full Borel hierarchy of the product. The next few exercises explore a more elementary
example for two measurable spaces that don’t have an exponential. I learned of this example
from Christine Tasson and Johannes Hölzl.

◸4.5. Consider the following measurable spaces:

⌜R⌝B ⟨R,℘R⟩: the discrete measurable space over the real numbers.
R̃: the measurable space over the real numbers with the countable-cocountable σ-algebra.
2B Fin 2B {trueB 1, falseB 0}: the discrete space with two points.

We’ll show that the exponential 2R̃ doesn’t exist in Meas.

Show that the diagonal {⟨r, r⟩ ∈ R × R∣r ∈ R} is a measurable subset of ∐r∈R R̃, and deduce
that ⌜R⌝ is not exponentiable.
(This fact doesn’t tell us which space Y doesn’t have the exponential Y ⌜R⌝.)
Show that if we have an exponential 2R̃, then the curried diagonal is a measurable
function λr.λs.[r = s] ∶ ⌜R⌝→ 2R̃. ◿

Aumann’s theorem is still worth the effort. The spaces in the previous exercise may seem
pathological, and we may falsely hope to exclude them by restricting to a subcategory of
‘nice’ spaces. Aumann’s theorem concerns indispensable spaces: 2 and R.
A frequent reaction to Aumann’s theorem is to hope that we can avoid it by replacing the set
of Borel measurable functions with a larger set of functions f ∶ R→ R, such as the Lebesgue-
measurable functions, or the universally measurable functions. This is not the case. Here’s
an ‘easy’, but unsatisfying, result:

◸4.6. Let E be a measurable space consisting of a σ-algebra over a set of functions that
contains all the Borel measurable functions: Meas(R,R) ⊆ ⌞E⌟ ⊆ Set(R,R). Show that the
evaluation function eval ∶ E × R→ R is not measurable. ◿
This result is unsatisfying because the σ-algebra on R in the domain of eval is the Borel
one, so if we dare to include even one non-Borel-measurable function f ∶ R → R, then
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eval ⟨f,−⟩ ∶ R → R won’t be measurable. The convincing result is that even if we take S to
be the real numbers together with the much bigger σ-algebra of Lebesgue-measurable sets,
then we still don’t have any σ-algebra on the Borel-measurable functions that makes the
evaluation function eval ∶ Meas(R,R)×S → R measurable. Doing so will require us to define
the Lebesgue measurable sets, which will take us deeper into classical measure theory. This
price is a hefty one to pay for just a dead-end, so I moved this material to Sec. B .If you’re
curious, jump right ahead.
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5 Sequences

◸5.1. Show that the following sets are Borel in the extended real numbers [−∞,∞]:

The set of converging sequences (including sequences whose limit ±∞):

Converge[−∞,∞]B {r⃗ ∈ [−∞,∞]N∣∃ lim
n→∞

rn}

For every a ∈ [−∞,∞], the set of sequences that converge to a:

ConvergeTo aB {r⃗ ∈ [−∞,∞]N∣ lim
n→∞

rn = a}

The set of convergence rates:

ConvergenceRateB {r⃗ ∈ (0,∞]∣ lim
n→∞

rn = 0} ◿

◸5.2. Show that the following higher-order operations are measurable:

lim ∶ Converge[∞,∞]→ [−∞,∞]
lim inf, lim sup ∶ [−∞,∞]N → [−∞,∞]
arg min, arg max ∶ [−∞,∞]N → N�
min ∶ BN ∖ {∅} → N, where BN is the measurable space structure induced by identifying
the measurable subsets of N with their indicator functions in the countable-product
measurable space 2N. ◿

◸5.3. For every measurable space X, we may adjoin a new element � called ‘bottom’
representing the undefined value, and making the singleton {�} measurable. Explicitly:

The points are the disjoint union of the points in X and �: ⌞X�⌟B {�} ∐ ⌞X⌟.

The measurable sets are generated by those of X and {�}:

BX� B σ({{ι1�}} ∪ ι2 [[BX]])

We can use the undefined value to define partial measurable functions. Show that the
following higher-order operations are measurable:

lim ∶ [−∞,∞]N → [−∞,∞]�
inf, sup ∶ ([−∞,∞]�)N → [−∞,∞]
compress ∶ (X�)N → (XN)� for any measurable space X which compresses the sequence
by removing any intermediate undefined values. ◿

◸5.4. Define a measurable function approx− ∶ ConvergenceRate × R → QN, such that each
approxb⃗r is a sequence q⃗ of rational numbers that converges to r at rate b⃗, so for all n ∈ N:
∣qn − r∣ < bn. ◿
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6 Quasi-Borel spaces

Practice the basic definitions of qbses and their morphisms.

◸6.1. We can equip the real numbers with the structure of a qbs:

The points are the real numbers.
The random elements are the Borel measurable functions α ∶ R→ R

We’ll write more succinctly below: RB ⟨⌞R⌟, Meas(R,R)⟩.

Check that R satisfies the qbs axioms.
Show that a function f ∶ R→ R is Borel measurable iff it is a qbs morphism. ◿

◸6.2. Let X be a set. The indiscrete qbs over X has all functions as random elements:

⌞ X
Qbs
⌟B ⟨X, Set(R, X)⟩

Check that ⌞ X
Qbs
⌟ satisfies the qbs axioms.

Let A be any qbs. Show that every function f ∶ ⌞ A
Set
⌟→X is a qbs morphism:

f ∶ A→ ⌞ X
Qbs
⌟ ◿

◸6.3. A qbs structure on a set X is a collection R ⊆XR of functions closed under the qbs
axioms. A function α ∶ R→X is σ-simple when:

The image α[R] is countable; and
For every x ∈ α[R], the preimage α−1[x] ⊆ R is a Borel set.

Show the σ-simple functions are the smallest (w.r.t. set inclusion) qbs structure on X. ◿

◸6.4. Let A, B, C be qbses. Show that the following functions are qbs morphisms:

Constant functions: for every b ∈ ⌞ B
Set
⌟, the function (λa.b) ∶ A→ B.

Identity functions: id B (λa.a) ∶ A→ A.
If f ∶ B → C and g ∶ A→ B are qbs morphisms then so is the composition f ○ g ∶ A→ C.
Every σ-simple functions α ∶ R→ A. ◿

◸6.5. Let X be a set. The discrete qbs over X has the σ-simple functions as random
elements:

⌜
Qbs
X ⌝B ⟨X,{α ∶ R→X ∣α is σ-simple}⟩

By Ex.6.3, it is a qbs. Let A be any qbs. Show that every function f ∶ X → ⌞ A
Set
⌟ is a qbs

morphism:

f ∶ ⌜
Qbs
X ⌝→ A ◿

◸6.6. Let A, B be isomorphic qbses. Show that their sets of points and their sets of random
elements are in bijection:

⌞A⌟ ≅ ⌞B⌟ RA ≅RB



O. Kammar 25

(Recall from Ex.2.7 that two spaces A, B are isormorphic when there are two morphisms
f ∶ A→ B and g ∶ B → A that are each other’s inverses: f ○ g = idB and g ○ f = idA.) ◿

◸6.7. Show that the three spaces:

R, defined in Ex.6.1;
⌞ R
Qbs
⌟, defined in Ex.6.2; and

⌜
Qbs
R ⌝, defined in Ex.6.5

are pairwise non-isomorphic qbses. ◿

◸6.8. Let f ∶ A→ B be a qbs morphism. Show:

f is surjective iff f is an epimorphism in Qbs.
f is injective iff f is a monomorphism in Qbs. ◿

◸6.9. We have a functor ⌞ −
Set
⌟ ∶ Qbs→ Set sending each qbs A to its set of points.

Define the action on morphisms, and show it is functorial and faithful.

Show:

⌞ −
Set
⌟ ∶ Qbs → Set has both a left and a right adjoint. What are the unit, counit, and

mate representations of each adjunction?
The functor ⌞ −

Set
⌟ is essentially surjective: every set is isomorphic to a set of points of

some space.
These left and right adjoints are fully-faithful, and neither essentially surjective. ◿
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7 Qbs constructions

In this sheet you’ll construct new qbses out of given ones. If the development starts to feel
too abstract, skip to the next sheet and come back to it when needed.

◸7.1. Let A be a qbs and X ⊆ ⌞A⌟ a set of points. We can equip X with a qbs structure
by taking as random elements all the random elements of A whose image is in X:

RX B {α ∶ R→X ∣α ∈RA}

This qbs is called the subspace of A induced by X.

Check that the subspace X is a qbs, and that the inclusion X ↪ ⌞A⌟ is a qbs morphism.

A subspace embedding m ∶ B ↪ A of a qbs B into A is a qbs morphism m ∶ B → A where:

⌞m⌟ ∶ ⌞B⌟→ ⌞A⌟ is injective; and
⌞m⌟○ ∶RB →RA is surjective.

Show the following:

Every point xB λ ⋆ .x ∶ 1→ A is a subspace embedding.
Each inclusion X ⊆ ⌞A⌟ of a subspace X into its superspace A is a subspace embedding.
Not every monomorphism in Qbs is a subspace embedding.
Every isomorphism is a subspace embedding.
Every qbs morphism factors as the composition m ○ e of an epimorphism followed by a
subspace embedding. ◿

◸7.2. Let A be a qbs, X a set, and g ∶ X → ⌞A⌟ any function from X into the points of A.
Show that g carries a qbs morphism f ∶ ⌞ X

Qbs
⌟→ A from the indiscrete space over X into A,

i.e., ⌞f⌟ = g, iff the subspace g[X]↪ A is indiscrete.

Deduce that every morphism f ∶ ⌞ X
Qbs
⌟→ R is constant. ◿

◸7.3. Find the terminal qbs 1 and the initial qbs 0. ◿

◸7.4. Let X1, X2 be qbses. Construct their product ⟨X1 ×X2, π1, π2⟩:

The set of points is the cartesian product: ⌞X1 ×X2⌟B ⌞X1⌟ × ⌞X2⌟.
The random elements are tupling of random elements:

RX1×X2 B {α ∶ R→X1 ×X2∣π1 ○ α ∈RX1 , π2 ○ α ∈RX2}

We can think of random elements in X1 × X2 as correlated random-elements in the
product space.
The two projections are given by the set-theoretic projections:

πi ∶ X1 ×X2 →Xi

πi ⟨x1, x2⟩B xi

Show:

X1 ×X2 satisfies the qbs axioms.
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Each projection πi ∶ X1 ×X2 →Xi is a qbs morphism.
The universal property of the product (see Ex.2.15).
Generalise: construct the product ∏i∈I Xi of any I-indexed family of spaces. ◿

◸7.5. Let X1, X2 be qbses. Construct their coproduct / disjoint union ⟨X1 ∐X2, ι1, ι2⟩:

The set of points is the disjoint union: ⌞X1 ∐X2⌟B ⌞X1⌟∐⌞X2⌟B ({1}×X1)∪({2}×X2).

The random elements are binary recombinations of random elements:

RX1∐X2 B

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α ∶ R→X1 ∐X2

RRRRRRRRRRRRRRRRRR

∃α1 ∈RX1 , α2 ∈RX2 .α = [α1, α2]

B λx.

⎧⎪⎪⎨⎪⎪⎩

x = ι1x1 ∶ α1 x1

x = ι2x2 ∶ α2 x2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

We can think of random elements in X1 ∐ X2 as splitting the probability between the
two spaces.
The two injections are given by the set-theoretic injections:

ιi ∶ Xi →X1 ∐X2

ιixB ιixB ⟨i, x⟩

Show:

X1 ∐X2 satisfies the qbs axioms.
Each injection ιi ∶ Xi →X1 ∐X2 is a qbs morphism.
The universal property of the coproduct (see Ex.4.3).
Generalise: construct the coproduct ∐i∈I Xi of any I-indexed family of spaces. ◿

◸7.6. Let X1
f1Ð→ Y

f2←ÐX2 be two qbs morphisms. Construct their pullback ⟨f1 & f2,
&
π1,

&
π2⟩:

The set of points is the set-theoretic pullback:

⌞f1 & f2⌟B {⟨x1, x2⟩ ∈ ⌞X1⌟ × ⌞X2⌟∣f1 x1 = f2 x2}

The random elements are tupling of random elements whose projections agree:

Rf1&f2 B {α ∶ R→ ⌞f1 & f2⌟∣
&
πi ○ α ∈RXi , i = 1, 2}

The projections are given by the set-theoretic projections:

&
πi ∶ X1 ×X2 →Xi

&
πi ⟨x1, x2⟩B xi

Show:

f1 & f2 satisfies the qbs axioms.
Each projection &

πi ∶ f1 & f2 →Xi is a qbs morphism.
The universal property of the pullback:
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f1 & f2 X2

YX1

X2

X1

Z

Y

X2

X1

Z

f1 & f2

&
π1

&
π2

f1

f2= p1

p2

f1

f2

=
and every

p1

p2

&
π1

&
π2

h

=

=

Ô⇒

The pullback is a subspace of the product: f1 & f2 ↪X1 ×X2. ◿

◸7.7. The pullback of a subspace embedding m ∶ S ↪ Y along any morphism f ∶ X ↪ Y is
a subspace embedding &π1 ∶ f &m↪X. ◿
We can summarise this situation in the previous exercise in this diagram, where the right-
angle marker inside the square marks it as a pullback:

f1 & f2 S

YX

&
π1

&
π2

f

m

◸7.8. Show:

The free qbs functor ⌜
Qbs
− ⌝ ∶ Set→Qbs preserves finite products.

The free qbs functor ⌜
Qbs
− ⌝ ∶ Set→Qbs doesn’t preserve products.

The indiscrete qbs functor ⌞ −
Qbs
⌟ ∶ Set→Qbs doesn’t preserve finite coproducts.

Deduce that the sequence of adjunctions: ⌜
Qbs
− ⌝ ⊣ ⌞ −

Set
⌟ ⊣ ⌞ −

Qbs
⌟ between Qbs and Set

doesn’t have a further left adjoint nor a further right adjoint. ◿

Let X be a set. A metaphorology1 over X is a set R ⊆ XR of functions from R to X that
satisfies the qbs axioms (contains all constant functions and closed and measurable pre-
composition and recombination). Thus, a qbs A is a set ⌞A⌟ equipped with a metaphorology
RA. (In Ex.6.3 we called this concept a qbs structure.)

◸7.9. Let X be a set and E ⊆ XR any set of functions. Show that the smallest
metaphorology ClqbsE on X containing E is given by the recombinations of measurable
pre-compositions of E-elements and constant functions:

ClqbsE =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[λr ∈ Ui.αi(r)]i∈I

RRRRRRRRRRRRRRRRRRR

I is countable,R = ⊎i∈I Ui, and for every i ∈ I:
Ui ∈ BR, and
either αi constant, or there is some
measurable φi ∶ Ui → R, βi ∈ E s.t.: αi = βi ○φi

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

◿

◸7.10. Show that the functor ⌞ −
Set
⌟ ∶ Qbs→ Set generates limits and colimits, but doesn’t

create limits nor colimits (see discussion before Ex.3.27). Deduce that Qbs is complete and
cocomplete. ◿

1 I’m open to suggestions for other names. Going back to its original roots, ‘metaphor’ originates from the
Greek µετα (‘meta’, across) and φερω (‘phero’, to carry). This choice makes ‘metaphors’ an appealing
alternative to ‘random element’. The other candidate was ‘stochastology’.
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8 Borel subspaces

The central notion in measure theory is that of a measurable subset — it is the defining
concept of a measurable space. With quasi-Borel spaces, measurable subsets are a derived
notion, but take a nonetheless central role.

◸8.1. A measurable, or Borel, subset in a qbs A is a subset U ⊆ ⌞A⌟ such that the preimage
under every random element α ∈ RA is a Borel subset of the reals: α−1[U] ∈ B. We denote
by BA the set of Borel subsets of A.

Show that the measurable sets BA in a qbs A form a σ-algebra, and every random element
is measurable w.r.t. this σ-algebra.

We denote the resulting measurable space by ⌜
Meas

A ⌝ B ⟨⌞ A
Set
⌟,BA⟩, and call it the free

measurable space over A.

Show that U ⊆ ⌞A⌟ is measurable iff its indicator function [− ∈ U] ∶ A → ⌜
Qbs
2 ⌝ is a qbs

morphism from A into the discrete qbs on the two-element set. ◿

◸8.2. Find the Borel sets of the discrete qbs ⌜
Qbs
2 ⌝ and the indiscrete qbs ⌞ 2

Qbs
⌟ on two

elements. Generalise this result to the discrete and indiscrete qbses over any set X. ◿

◸8.3. Show that the Borel subsets of R in the standard sense coincide with the measurable
subsets of the qbs R. ◿

◸8.4. Let A be a qbs and X ⊆ ⌞A⌟ be a subset.

Show that if U ⊆ ⌞A⌟ is Borel in A, then U ∩X is Borel in the subspace X:

U ∈ BA Ô⇒ U ∩X ∈ BX

Show that if X is itself a Borel subset, then BX ⊆ BA.
Show that the previous clause may fail if X is not Borel. ◿

The Borel subsets of a subspace can be quite different from the Borel subsets of its
superspace. For example, we may have a Borel subset V ∈ BX of the subspace that is
not of the form U ∩X for any Borel subset U ∈ BA of the superspace.
Here’s the intuition:

A subset U in a qbs is measurable unless there is some random element that stops it
from being measurable by mapping U onto a non-Borel inverse image.
‘Wild’ random elements may not factor through a subspace embedding X ↪ A.
So a subspace may have more Borel subsets in X than in its superspace.

If you want to see this intuition playing out, here is how to construct a counter-example:

◸8.5. Let C1 ⊆ R be a non-Borel subset and C2 B R ∖C1 its complement, also non-Borel.
Let 3B {0, 1, 2} be a three-element set, and define two primitive random elements αi ∶ R→ 3:

α0r B
⎧⎪⎪⎨⎪⎪⎩

r ∈ C1 ∶ 0
r ∈ C2 ∶ 2

α1r B
⎧⎪⎪⎨⎪⎪⎩

r ∈ C1 ∶ 1
r ∈ C2 ∶ 2

Take A B ⟨3, Clqbs {α0, α1}⟩ to be the qbs over 3 with the smallest metaphorology (see
Ex.7.9) containing α0 and α1, and take X B 2 ⊆ 3.
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Show that X,{0} ,{0, 2} ∉ BA are not Borel subsets in A.
Show that if α ∈RA is a random element in A, then either α is σ-simple or 2 ∈ Im (α).
Show that {0} ∈ BX is a Borel subset of the subspace X. ◿

◸8.6. Let f ∶ A→ B be a qbs morphism. Show that:

The inverse image under f restricts to a function Bf ∶ BB → BA.

The underlying function ⌞ f
Set
⌟ is a measurable function ⌜

Meas
f ⌝ ∶ ⌜

Meas
A ⌝→ ⌜

Meas
B ⌝. ◿

The collection of Borel sets has a universal property: it allows us to connect measurable
spaces with quasi-Borel spaces as follows:

◸8.7. For a measurable space M , define its set of random elements by RM BMeas(R, M).

Show that RM is a metaphorology, that is, ⌞M
Qbs
⌟B ⟨⌞M

Set
⌟,RM⟩ is a qbs.

For every measurable function f ∶ M → N between measurable spaces, show that its
underlying function is a qbs morphism ⌞ f

Qbs
⌟ ∶ ⌞M

Qbs
⌟→ ⌞ N

Qbs
⌟.

Noticing that ⌞ −
Qbs
⌟ ∶ Meas→Qbs is a (faithful) functor, show that it has a left adjoint

equipping a qbs with its set of Borel subsets: ⌜
Meas
− ⌝ ⊣ ⌞ −

Qbs
⌟. ◿

◸8.8. The free qbs functor ⌜
Qbs
− ⌝ ∶ Set→Qbs doesn’t preserve countable products. ◿

This point is a natural place to stop, but if you’re having fun with this material, then the
rest of this sheet studies the relationships between natural notions of ‘subspace’.

m ∶ A↣ B Monomorphisms: injective qbs morphisms.
m ∶ A ↪ B Subspace embedding: injective on elements and surjective on random-
elements that factor through the image.
m ∶ A ⊱→ B Borel injections: monomorphisms whose image is a Borel subset.
m ∶ A → B Borel embeddings: subspace embeddings whose image is a Borel subset.

We establish their following mutual relationships, where all inclusions are proper:
mono

Borel embedding

Borel mono strong mono

subspace embedding

regular mono

◸8.9. Place the following injections in the hierarchy of monomorphisms above:

The injection ⊺B λ ⋆ .1 ∶ ⌜
Qbs
1 ⌝↣ ⌜

Qbs
2 ⌝.

The injection λx.x ∶ ⌜
Qbs
2 ⌝↣ ⌞ 2

Qbs
⌟.
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The injection λx.x ∶ ⌜
Qbs
2 ⌝↣ ⌞ 3

Qbs
⌟.

The (subspace) inclusion λx.x ∶ C ↪ R where C is a non-Borel subset of R. ◿

◸8.10. Let m ∶ S → A be a qbs morphism. Show that the following are equivalent:

m is a subspace embedding, i.e.: there is a subset X ⊆ ⌞A⌟ and an isomorphism m′ ∶ B ≅Ð→
X satisfying:

S

X

A

m

m′ ≅
λx.x

=

m is right-orthogonal to every empimorphism e ∶ B ↠ C: for every commuting square as
on the left, there is a unique morphism h ∶ C → S commuting the triangles on the right:

Ô⇒
B C

AS

B C

AS

e

f g

m

e

f g

m

h=
=

=

(Morphisms that have this property are called strong monomorphisms.)
m is an equaliser of some parallel pair of morphisms f, g ∶ A→ B:

m equalises f and g:
A

A

S B

m

m

f

g

=

and every equalising morphism e ∶ C → A factors uniquely through m:

A

A

E B

e

e

f

g

= Ô⇒
EE

A
e

m

h

=

(Morphisms that have this property are called regular monomorphisms.) ◿

◸8.11. A class of qbs-morphisms is admissible when, for every pullback square as follows,
in which m ∈M then necessarily &π1 ∈M:

f &m X

BA

&
π2

&
π1

m

f

Show that:

Monomorphisms are admissible.
Subspace embeddings are admissible.
Borel embeddings are admissible. ◿
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◸8.12. Let M be an admissible class. An M-classifier is a pair ⟨ΩM ,⊺M⟩ consisting of:

a space ΩM ; and
an M-morphism ⊺M ∶ 1→ ΩM

such that for every M-morphism m ∶ X → A, there is a unique qbs morphism φ ∶ A → ΩM
for which the following square is a pullback square:

X 1

ΩMA

⟨⟩

⊺Mm

φ

In this case, we denote this unique φ by [− ∈m[X]]M ∶ A→ ΩM .
Show:

If M has a classifier in Qbs, then M contains only subspace embeddings.
The indiscrete Booleans ⟨⌞ 2

Qbs
⌟, true⟩ form a subspace embedding classifier.

The discrete Booleans ⟨⌜
Qbs
2 ⌝, true⟩ form a Borel embedding classifier.

There are no monomorphism nor Borel monomorphism classifiers in Qbs. ◿

A factorisation system ⟨E,M⟩ is a pair of classes of morphisms such that:

E and M are closed under composition and contain all isomorphisms;
every morphism f ∶ A→ B has an E-M factorisation:

A B

X

f

E ∋ e m ∈M
=

every morphism m ∈M is right-orthogonal to every morphism e ∈ E (cf. Ex.8.10):

Ô⇒
B C

AS

B C

AS

e ∈ E

f g

m ∈M

e ∈ E

f g

m ∈M

h=
=

=

◸8.13. Show that ⟨epi, subspace embedding⟩ is a factorisation system. ◿

◸8.14. A qbs morphism e ∶ A→ B is a strong epimorphism when the its action on random
elements is surjective:

e ○ − ∶RA ↠RB

Show that:

The projection π1 ∶ R2 → R is a strong epimorphism.
Every strong epimorphism is surjective.
Every map from a non-empty space into the terminal space ⟨⟩ ∶ X → 1 is a strong
epimorphism.
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If fi ∶ Ai → Bi, i ∈ I, is a countable collection of strong epimorphisms, then their product
∏i∈I fi ∶∏i∈I Ai →∏i∈I Bi is a strong epimorphism. ◿

◸8.15. Find an epimorphism that is not a strong epimorphism. ◿

◸8.16. Show that ⟨strong epimorphisms, mono⟩ is a factorisation system. ◿

Exerc i ses
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9 Function spaces

Let A, B be qbses, their function space BA is given by the following:

The set of points ⌞BA⌟ is the set Qbs(A, B) of qbs morphisms f ∶ A→ B.
The set of random elementsRBA is the set curry [Qbs(R ×A, B)], consisting of functions
α ∶ R→Qbs(A, B) that, when uncurried, are qbs morphisms uncurry(α) ∶ R ×A→ B.

Exercises Ex.9.1–Ex.9.3 unpack these definitions and show that they realise the familiar
interface to functions — evaluation/application and abstraction — as well as the qbs axioms.
You can skip them and come back after you’ve used the function space in the later exercises.

◸9.1. Let A, B be qbses and γ ∶ R × ⌞A⌟→ ⌞B⌟ be any set theoretic function. Show:

If γ ∶ R × A → B is a qbs morphism, then its curried form curry γ B λr.λa.γ(r, a) is
pointwise a qbs morphism: curry γ ∶ R→Qbs(A, B).
curry γ ∈ RBA iff for every measurable φ ∶ R → R and random element α ∈ RA, the
following function is a random element:

(λr.γ(φ r, α r)) ∈RB ◿

◸9.2. Let A, B be qbses.

Validate the constant and precomposition qbs axioms for the function space.
Let γ⃗ ∈ RBA be a sequence of random elements in the function space, R = ⊎n Un a
countable partition of the reals into Borel sets, φ ∶ R → R a measurable function, and
α ∈RA a random element. Let Vn B φ−1[Un].

Evaluate the recombination ⟨λr.(uncurry γn)(φ r, α r)⟩n along V⃗ at any s ∈ Vm.
Let γ be the recombination of γ⃗ along U⃗ . Evaluate (uncurry γ)(φ s, α s) at any s ∈ Vm.
Validate the recombination axiom for the function space.

Show that evaluation eval ∶ BA ×A→ A is a qbs morphism. ◿

◸9.3. Show that ⟨BA, eval⟩ is the exponential of B by A (cf. Sec. 4). ◿
We equip the Borel subsets BA of a qbs A with the structure of a qbs. Identifying a Borel
subset U ⊆ ⌞A⌟ with its indicator function [− ∈ U] ∶ A→ 2 (cf. Ex.8.1), we define

BA B 2A

◸9.4. Show that the following functions are qbs morphisms:

Membership testing: (∈) ∶ A ×BA → 2
Complementation: ¬ ∶ BA → BA

Countable unions and intersection: ⋃I ,⋂I ∶ BI
A → BA, for I countable set. ◿

◸9.5. Let A be a qbs with a countable carrier. Show that the following functions are qbs
morphisms:

Equality testing, subset containment: (=), (⊆), (⊂) ∶ B2
A → BA.

Inhabitation: (≠ ∅) ∶ BA → 2. ◿
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◸9.6. Using the techniques in Sec. A, there is a Borel set U ∈ BR and a measurable function
f ∶ R→ R such that the image f[R] is not Borel (cf. Ex.A.13).
Use this fact and show that the following functions are not qbs morphisms:

Inhabitation: (≠ ∅) ∶ BR → 2.
Equality and containment (=), (⊆), (⊂) ∶ B2

R → BR.
Disjointness: (− ∩ − = ∅) ∶ B2

R → 2. ◿

◸9.7. If A = ⌜
Qbs
I ⌝ is a finite discrete qbs, then BA is a finite discrete qbs. ◿

◸9.8. Let U ⊆ BR×R be a Borel set. Its section at r is the set Ur B {s ∈ R∣⟨r, s⟩ ∈ U}. A set
U ⊆ BR is Borel on Borel when, for every Borel set U ⊆ R × R, the set of sections of U that
are in U is Borel: {r ∈ R∣Ur ∈ U} ∈ BR.
Show that U is Borel on Borel iff U ∈ BBR .
The observation that this descriptive-set-theoretic notion coincides with the Borel sets on a
higher-order space is due to Sabok et al. (2021). ◿

◸9.9. Let A be a qbs. Show that a function α ∶ R → ⌞A⌟ is a random element in RA iff it
is a qbs morphism α ∶ R→ A. ◿
The last exercise provides a qbs of random elements, by setting: RA B AR.

◸9.10. Define functors B− ∶ Qbsop → Qbs and R− ∶ Qbs → Qbs, and construct a natural
isomorphism RBA

≅ BR×A. ◿

◸9.11. Show that R− preserves strong epimorphisms (cf. Ex.8.14): if e ∶ A↠ B is a strong
epimorphism, then Re ∶RA →RB is also a strong epimorphism. ◿

Exerc i ses
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10 Type structure

The type combinators — tuples, variants, functions, and their recursive combinations — are
the basic building-blocks of compositional programming, and we can similarly use them as
building-blocks for statistical modelling. This sheet covers classical material in the semantics
of type structure, specialised for quasi-Borel spaces.

We’ve already seen the qbs constructions that do much of the low-level work: the ground
combinators — products and coproducts.
Given a sequence of spaces spaces A1, . . . , An, their:

tuple space of is the product A1×⋯×An with elements the n-tuples ⟨a1, . . . , an⟩ (Ex.7.4).
variant space is the coproduct A1∐⋯∐An with elements ιia, 1 ≤ i ≤ n, a ∈ ⌞Ai⌟ (Ex.7.5).

When modelling, as with programming, using positional tuples and variants can be tedious
and confusing, and doesn’t scale well to large or structured collections of spaces. So we
also introduce the indexed versions of tuples, called records, and indexed variants. Given an
I-indexed set of spaces ⟨Ai⟩i∈I , their:

record space is the I-indexed product ∏i∈I Ai.
variant space is the I-indexed coproduct ∐i∈I Ai.

The structure of these spaces depends on a set rather than a sequence, and so only the labels
matter, not their order. We’ll therefore use set-comprehension-like notation for the indexed
versions, to emphasise that the order of components doesn’t matter, only their indices. So
when I = {ℓ1, . . . , ℓn}, we’ll use:

jℓ1 ∶ Aℓ1 , . . . , ℓn ∶ AℓnoB∏ℓ∈I Aℓ

with element records ⟨ℓ1 ∶ aℓ1 , . . . , ℓn ∶ aℓn⟩ B ⟨aℓ⟩ℓ∈I .
{ℓ1 ∶ Aℓ1 ∣ . . . ∣ ℓn ∶ Aℓn}B∐ℓ∈I Aℓ with ‘constructor-headed’ elements ℓ aB ιℓa for ℓ ∈ I.
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A The Borel hierarchy

These exercises concern the details behind the proof of Aumann’s (1961) theorem. Flicking
through, you’ll see there’s quite a lot to cover, but the rest of the material doesn’t depend
on this technical development. It’s only here to satisfy your curiosity about what happens
deep inside the σ-algebra of Borel sets. If you enjoy these, take a closer look at descriptive
set theory. Two classical textbooks are Moschovakis’s (1987) selection of key, central results,
and Kechris’s (1995) comprehensive, detailed, and slightly more modern book.
Define by transfinite induction on ω1 + 1, the successor of the first uncountable ordinal:

ΣUα , ΠUα , ∆U
α ⊆ ℘X (α ∈ ω1)

ΣU1 B U

ΣUα+1 B
⎧⎪⎪⎨⎪⎪⎩
⋃
i∈I

Ai

RRRRRRRRRRR
I ⊆ N, A⃗ ∈ U ∪ ⋃

β≤α

ΠUβ
⎫⎪⎪⎬⎪⎪⎭

(1 ≤ α ∈ ω1)

ΣUγ B ⋃
β<γ

ΣUβ (1 ≤ γ a limit ordinal in ω1)

ΠUα B [Σ
U
α]
∁
B {A∁∣A ∈ΣUα} ∆U

α BΣUα ∩∆U
α

◸A.1. For every α ≤ ω1, we have ΣUα ∪ΠUα ⊆∆U
α+1. ◿

◸A.2. Prove that σ(U) =ΣUω1
=ΠUω1

=∆U
ω1

. ◿
We therefore have the following relationships between the classes of the Borel hierarchy:

ΣU1

∆U1

ΠU1

ΣU2

∆U2

ΠU2

ΣU3

∆U3

ΠU3

ΣUω

∆Uω

ΠUω

ΣUω+1

∆Uω+1

ΠUω+1

ΣUω1

∆Uω1

ΠUω1

⋯ ⋯ σ(U)
⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

⊆

=

=

=

=
⊆ ⊆

Given a set V whose elements represent variables, the σ-terms over V are the countably-
infinitary terms generated by the following grammar:

t, s ∶∶= x ∣ x∁ ∣⋃
i∈I

ti ∣⋂
i∈I

ti (x ∈ V, I ⊆ N)

Given a valuation e ∶ V → σ(U), we can interpret each σ-term t as a Borel subset ⟦t⟧ e ∈ σ(U).
Note that every term t involves only countably many variables, we call these variables its
support suppt.

◸A.3. Let U ⊆ ℘X, V ⊆ ℘Y . Show that for every measurable f ∶ ⟨X, σ(U)⟩→ ⟨Y, σ(V)⟩, the
inverse image f−1 is a homomorphism of σ-terms:

f−1[⟦t⟧ e] = ⟦t⟧ (f−1 ○ e) ◿

◸A.4. Show that if e ∶ V ↠ U is surjective, then ⟦−⟧ e is surjective on σ(U). ◿
We call a term alternating when, for every non-variable sub-term f ⟨ti⟩i, the root of each
direct sub-tree is not the same operation symbol f .

◸A.5. Show that every term is denotationally equivalent to an alternating term. You might
enjoy presenting a denotation-preserving terminating rewriting system. ◿

Exerc i ses



38 Quasi-Borel space exercises

The Aumann rank function assigns to each Borel set the first stage in the hierarchy in which
it occurs in some ΣU set:

rankU ∶ σ(U)→ ω1

rankUABmin {α ∈ ω1∣A ∈ΣUα}

Define the alternating depth of a σ-term as follows:

alter ∶ σ-TermV → ω1

alter xB alter x∁ B 0 alter⋃
i∈I

ti B⋁
i∈I

alter ti alter⋂
i∈I

ti B⋁
i∈I

alter ti +⋁
i∈I

⎡⎢⎢⎢⎣
ti ≠ ⋂

j∈J
sj

⎤⎥⎥⎥⎦

◸A.6. Let t be a σ-term and e a valuation in some U .

Show that ⟦t⟧ e ∈ΣUalter t∨α, where αB ⋁x∈suppt e(x) ∈ ω1.
Deduce that if e ∶ V → U , then rank ⟦t⟧ e ≤ alter t. Generalise to any e ∶ V → σ(U).
Show that rankA =min {alter t∣A = ⟦t⟧ e}. ◿

◸A.7. Prove that if A ∈ σ(U) and ρB rankUA, then:

A ∩ [ΣUα] ⊆ΣA∩[U]
α ⊆ΣU(ρ+1)∨α A ∩ [ΠUα]

⊆ΠA∩[U]
α ⊆ΠU(ρ+1)∨α A ∩ [∆U

α] ⊆∆A∩[U]
α ⊆∆U

(ρ+1)∨α ◿

Let U ⊆ ℘X, V ⊆ ℘Y . When V is countable, define:

rankU,V ∶ Meas(⟨X, σ(U)⟩ , ⟨Y, σ(V)⟩)→ ω1

rankf B ⋁
A∈V

f−1[A]

Let f ∶ ⟨X, σ(U)⟩→ ⟨Y, σ(V)⟩ be a measurable function.

◸A.8. What’s the rank of a continuous function between two topological spaces? ◿

◸A.9. Bound the rank of f−1[A] for every A ∈ σ(V), using rankA and rankf .
Is your bound tight enough to deduce that rankf−1[A] ≤ rankA when f is continuous for
the topologies generated by U and V? ◿
Let U ⊆ ℘(C ×X) and V ⊆ ℘X be two classes of subsets. We will regard subsets ⟦−⟧ ∈ U as
potential encodings for subsets in V, where each element c ∈ C encodes the section subset
⟦c⟧B {x ∈X ∣x ∈ ⟦c⟧}.
We say that ⟦−⟧ ∈ U is a U-V-encoder when V = {⟦c⟧∣c ∈ C}. The intended meaning is that
such an encoder lets us cover all the V-subsets with a code in C. The literature uses the
term C-universal set for Ξ for a U-V-encoder, when U and V belong to the same family of
subset classes Ξ, such as U =Σα(C ×X) and V =Σα(X).

◸A.10. Show that if ⟦−⟧ is a U-V-encoder, then ⟦−⟧∁ is a [U]∁-[U]∁-encoder. ◿

◸A.11. Let ⟦−⟧ be a U-V encoder, where U ⊆ ℘(C ×C) and V ⊆ ℘C. Consider the diagonal
function △B λx. ⟨x, x⟩ ∶ C → C ×C.
Show that △−1[⟦−⟧∁] ∉ V. ◿
We’ll use this diagonalisation technique to show that the Borel hierarchy doesn’t collapse
for the reals.

◸A.12. Recall the Cantor space G ⊆ R, let V be the open subsets of R, let V ′ B G ∩ [U] be
the open subsets in G, and U ′ be the open subsets of G ×G.
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Show that if, for all 1 ≤ α < ω1, we have ΣV
′

α ≠ΠV
′

α , then ΣVα ≠ΠVα too, and so the Borel
hierarchy for R only stabilises at ω1.
Show that if G has a ΣU

′

α -ΣV
′

α -encoder, then ΣV
′

α ≠ΠV
′

α .
Show that, for all 1 ≤ α ∈ ω1, G has both a ΣU

′

α -ΣV
′

α encoder and a ΠU
′

α -ΠV
′

α encoder. ◿

The last exercise constructs a non-Borel set. This result doesn’t fit the narrative, but we’ve
already introduced most of the tools required for the job.

◸A.13. A Borel set is analytic when it is empty, or a continuous image of the Baire space
Y B NN. We denote by Σ1

1(S) the class of analytic subsets of S. One can show that every
Borel set is analytic, but that would require a lot of additional machinery.

Show that if BY ⊆Σ1
1(Y) and we have a Σ1

1(Y × Y)-Σ1
1(Y)-encoder, then BY ⊂Σ1

1(Y).
Show that we have a Π0

1(Y × Y)-Π0
1(Y)-encoder.

Construct a homeomorphism Y ≅ Y×Y. Derive a Π0
1(Y×Y×Y)-Π0

1(Y×Y)-encoder F ⟦−⟧.
Show that setting x ∈ ⟦c⟧ when ∃z. ⟨x, z⟩ ∈ F ⟦c⟧ is an Σ1

1(Y × Y)-Σ1
1(Y)-encoder.

Hint: the graph of a continuous function over Y is a Π0
1(Y × Y) set. ◿

Exerc i ses
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B Lebesgue measurability

Measure theory is based on measurable sets, and the Borel sets of real numbers is the
minimal collection of these sets. While the Borel sets are closed under many operations,
they are not closed under all of them, and measure theorists and descriptive set theorists
investigate other, more general, classes of subsets: analytic sets, universally measurable
sets, and the Lebesgue sets. Nonetheless, in this batch of exercises we’ll see that the extra
level of generality Lebesgue measurability offers, which subsumes the other notions, doesn’t
get around Aumann’s theorem: classical measure theory seems incompatible with function-
spaces.
In the process, we’ll use measures, measure spaces, and the Lebesgue measurable sets. These
concepts come up in the context of higher-order measure theory, and these exercises may
serve as classical tutorial to these concepts.
An outer measure λ∗ on a set X is a function λ∗ ∶ ℘X → W, i.e., an assignment of a
non-negative, potentially infinite, real value to every subset, that is moreover monotonically
σ-subadditive: for every countable set of subsets I ⊆ℵ1 ℘X, and every A ⊆ ⋃B∈I B, we have
λ∗A ≤ ∑B∈I λ∗B.

◸B.1. Let λ∗ be an outer measure on a set X. Show:

The empty set has null outer measure: λ∗∅ = 0.
Monotonicity: A ⊆ B Ô⇒ λ∗A ≤ λ∗B.
σ-subadditivity: for every countably infinite family of subset A⃗ ∈ (℘X)N we have
λ∗ (⋃i∈N Ai) ≤ ∑i∈N λ∗Ai.
Every function λ∗ ∶ ℘X →W satisfying these three conditions is an outer measure. ◿

A measure λ on a measurable space X is a non-negative, σ-additive function, i.e., for every
countable set I and I-indexed family of pairwise-disjoint measurable sets ⟨Ui ∈ BX⟩i∈I , we
have: λ (⋃i∈I Ui) = ∑i∈I λUi. A measure space Ω = ⟨⌞ Ω

Meas
⌟, λΩ⟩ is a measurable space

⌞ Ω
Meas

⌟ and a measure on it, and similarly an outer measure space is a measurable space
with an outer measure on it.
Every measure space has an outer measure space on its sets of points. This is the only
example of interest. Let Ω be a measure space. Define a function λ∗Ω ∶ ℘⌞ Ω

Set
⌟ → W by

setting, for every A ∈ ℘⌞Ω⌟:

λ∗AB inf {λU ∣U ∈ B⌞ Ω
Meas

⌟, U ⊇ A}

So λ∗A is the least measure we can assign to A by approximating it from the outside with
a measurable set. Hence the name — outer measure.

◸B.2. Show that λ∗Ω is an outer measure on ⌞ Ω
Set
⌟, and that it extends λ: for every U ∈ BΩ,

we have λ∗U = λU . ◿

◸B.3. Show that, for every A ∈ ℘⌞Ω⌟ there is some measurable subset U ∈ BΩ, U ⊇ A,
satisfying λ∗A = λU . ◿
Let Ω be an outer measure space. A subset E ⊆ ⌞Ω⌟ is outer measurable when, for every
A ⊆ ⌞Ω⌟ we have:

λ∗A = λ∗(A ∩E) +λ∗(A ∩E∁)
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◸B.4. Let Ω be an outer measure space. For every subset E ⊆ ⌞Ω⌟, E is outer measurable
iff for every A ⊆ ⌞Ω⌟ we have: λ∗A ≥ λ∗(A ∩E) +λ∗(A ∩E∁). ◿

◸B.5. Let Ω be a measure space. Show that every measurable set U ∈ BΩ is outer
measurable in the associated outer measure space. ◿

◸B.6. Let Ω be an outer measure space.

The outer measurable subsets of an outer measure space form a σ-algebra GΩ.
The outer measure λ∗ restricts to a measure on ⟨⌞Ω⌟,GΩ⟩.

We denote the resulting measure space by ΩB ⟨⟨⌞Ω⌟,GΩ⟩, λ∗⟩. ◿

The Lebesgue subsets of R are the outer measurable subsets w.r.t. the Lebesgue measure.
The process: measure space Ω ↦ outer measure space ⟨⌞Ω⌟, λ∗⟩ ↦ measure space Ω seems
like it enhances the space with many more measurable sets. What we’ll show next is that
these sets aren’t too far off from the measurable sets we started with.
A null set in a measure space Ω is a subset Z ⊆ ⌞Ω⌟ that is contained in a 0-measure set:
there is some U ∈ BΩ with Z ⊆ U and λU = 0. Let NΩ denote the set of λ-null sets.

◸B.7. The null subsets form an ideal: If Z is a null set and U ⊆ Z is any subset, then U is
also a null set. Therefore they are closed under non-empty intersections. The null subsets
are closed under countable unions. ◿

◸B.8. Consider the Borel space R and the Lebesgue measure λ. Show that there is a λ-null
set that is not Borel measurable. ◿

◸B.9. Show that every null set is outer measurable. ◿

◸B.10. Let Ω be a measure space. Prove Ω and Ω have the same null sets: NΩ =NΩ
. ◿

Let Ω be a measure space. A negligible measurable subset is a measurable subset U ∈ BΩ such
that, for every measurable subset V ⊆ U , we have λV = 0 or λV = ∞. Non-null negligible
measurable subsets are sometimes called ‘atomic sets of infinite measure’, and Vákár and
Ong (2018) call the negligible sets 0-∞-sets. While it may seem strange to call a set of
potentially infinite measure negligible, in the context of integration, a Lebesgue integrable
function must vanish almost everywhere on negligible sets:

◸B.11. Let U be a negligible measurable subset in a measure space Ω. Let φ ∶ Ω → W be
a Lebesgue integrable random variable, i.e., a function with a finite expectation ∫ λφ <∞.
Show that λ {ω ∈ U ∣φω ≠ 0} = 0. ◿
A negligible subset is a set contained in a negligible measurable subset, and we denote the
set of negligible subsets by NΩ.

◸B.12. Let Ω be a measure space and consider the scaled measure ∞⊙λ. Show that:

Every measurable set U is negligible in the scaled measure, and therefore every subset
is negligible.
A subset is null in the scaled measure iff it is null in Ω. ◿

◸B.13. Consider the Lebesgue measure on R. Show every negligible subset is null. ◿

◸B.14. The negligible subsets generalise the null sets and have analogous properties:

Exerc i ses
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The negligible subsets form an ideal.
The negligible subsets are closed under countable unions.
Every negligible subset is outer measurable.
Every negligible subset of finite outer measure is null. ◿

The completion of a measure space Ω is the following measurable space Ω:

It has the same points ⌞⟨X, λ⟩⌟B ⌞X⌟.

Its σ-algebra is generated by the measurable sets and the null sets: BΩ B σ(BX ∪N).

◸B.15. Show that the following are equivalent for a subset U ⊆ ⌞Ω⌟:

U is measurable in the completion Ω
There is a measurable set V ∈ BΩ and a null set Z ∈NΩ such that U = V ∪Z.
There is a measurable V ∈ BX such that U ∖ V is null. ◿

◸B.16. Let E be an outer measurable subset in a measure space Ω. Show that if E has
finite outer measure, then:

There are measurable U, V ∈ BΩ with U ⊆ E ⊆ V and λU = λ∗E = λV .
E = EB ∪EN where EB ∈ BΩ and EN ∈N. ◿

A measure space Ω is σ-finite when there is a countable measurable partition ⌞Ω⌟ = ⊎i∈I Ωi

for which every subset has λΩi = 0.

◸B.17. Show that in a σ-finite space Ω, the outer measurable sets coincide with the
completion σ-algebra: B

Ω
= B

Ω
◿

Let Rλ be the measurable space over the reals with the Lebesgue σ-algebra. By the last few
exercises, every Lebesgue measurable set on the reals is a Borel set apart from a null set
of points. Similarly, a Lebesgue measurable function f ∶ ⌞ Rλ

Meas
⌟ → R is almost-everywhere

equal to a Borel measurable function g ∶ R→ R:

◸B.18. Let X be a measurable space whose σ-algebra is countably generated, i.e., there
is a countable set U ⊆ BX such that BX = σ(U). For every Lebesgue measurable function
f ∶ Rλ → X there is a Borel measurable function g ∶ R → X such that f(x) = g(x) λ(dx)-
almost certainly. ◿
So the class of Lebesgue measurable functions is not profoundly different from the class of
Borel measurable functions, especially as far as integration is concerned.
We are now ready to prove the Lebesgue-measurable version of Aumann’s theorem:

▸ Theorem (Aumann’s theorem for Lebesgue measurable evaluation). There is no σ-algebra
on BR making the membership relation [− ∈ −] ∶ BR × Rλ → 2 measurable. Similarly, there is
no σ-algebra on Meas(R,R) making evaluation eval ∶ Meas(R,R) × Rλ → R measurable.

It suffices prove that the discrete σ-algebra on BR doesn’t make the membership predicate
measurable:

◸B.19. Assume that [− ∈ −] ∶ BR × Rλ → 2 is not measurable when we equip BR with the
discrete σ-algebra. Show the following.

The membership predicate is not measurable w.r.t. every σ-algebra on BR.
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Evaluation eval ∶ Meas(R,R) × Rλ → R is not measurable w.r.t. every σ-algebra on
Meas(R,R). ◿

From this point, we assume to the contrary that [− ∈ −] ∶ BR × Rλ → 2 is measurable. Let:

U0 B [− ∈ −]−1[true] = {⟨U, x⟩ ∈ BR × R∣x ∈ U} ∈ BBR×Rλ
= ℘BR ⊗ (BR ∪NR)

Let eB ∶ b↠ BR, eN ∶ n↠NR, and e℘ ∶ p↠ ℘BR be enumerations of the Borel sets, null sets,
and powerset-over-Borel-sets of reals, respectively. Then we also have an enumeration of a
generating family for the box σ-algebra of the product space BR × Rλ :

e ∶ p × (b ⊎n)↠ [℘BR] × [BR ∪NR]B {U ×E∣U ⊆ BR, E ∈ BR ∪NR}
eB (e℘(π1−)) × ([eB , eN] (π2−))

By Ex.A.4 the σ-term interpretation function ⟦−⟧ e is surjective, and so there is some σ-term
t such that U0 = ⟦t⟧ e. Let V0 B suppt, and then V0 ⊆ p× (b⊎n) is a countable enumeration
of the variable names that appear in t, and we may restrict e to e0 ∶ V0 → [℘BR]× [BR ∪NR],
and consider t as a term t0 over V0 such that ⟦t0⟧ e0 = U0.
Let:

N B ⋃(p,ι2n)∈V0 eN ∈N;
Z a 0-measure Borel set with N ⊆ Z; and
S B R ∖Z equipped with the Borel-subspace σ-algebra.

◸B.20. Show that N is indeed a null set, so that Z exists. Show that S is an uncountable
Borel set. ◿
Define e1 ∶ V0 → ℘BR ⊗BS by setting:

e1(p, ι1b)B (e℘p) × (eBb ∩ S) e1(p, ι2n)B ∅

By re-interpreting the σ-term t0 with e1, we have a measurable set ⟦t0⟧ e1 ∈ BBR×S .

◸B.21. Show that for every U ∈ BR and s ∈ S, we have ⟨U, s⟩ ∈ ⟦t0⟧ e0 iff ⟨U, s⟩ ∈ ⟦t0⟧ e1. ◿
The last ingredient is to note that, by the original Aumann’s theorem, there is no σ-algebra
on BS that makes the membership predicate [− ∈ −] ∶ BS × R→ 2 measurable.

◸B.22. Use this last fact to get the desired contradiction. ◿
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