Denotational semantics Exercises

Ohad Kammar (ohad.kammar@cl.cam.ac.uk)
Ian Orton (rio22@cam.ac.uk)
October 21, 2015

Supervision 1

1 Introduction

1. Solve exercise 1.3.1. Don't spend too much time on this exercise. A straightforward, verbose, solution shouldn't take more than 60 lines of SML.
2. Solve exercise 1.3.2.
3. Solve exercise 1.3.3.
4. Solve exercise 1.3.4.

2 Domains

1. Solve exercise 2.5.1.
2. Solve exercise 2.5.2. As the claims in slide 27 are already proved in the notes, there is no need to prove them.
3. We say that a chain, $x_{0} \sqsubseteq x_{1} \sqsubseteq x_{2} \sqsubseteq \ldots$, is eventually constant if there exists a natural number k such that for all natural numbers $n \geq k$, we have $x_{n}=x_{k}$.
(a) Show that every eventually constant chain has a lub.
(b) Deduce that every finite poset is a cpo.
(c) Show that every monotone function preserves lubs of eventually constant chains.
(d) Deduce the following result: Let D, E be cpos such that all chains in D are eventually constant. All monotone functions $f: D \rightarrow E$ are continuous.
4. Solve exercise 2.5.3.
5. Let D, D^{\prime} be domains. We say that a function $f: D \rightarrow D^{\prime}$ is a continuous isomorphism if it is continuous, bijective, and its inverse $f^{-1}: D^{\prime} \rightarrow D$ is also continuous.
(a) Show that if f is continuous and bijective, and f^{-1} is monotone, then f is a continuous isomorphism.
(b) Find an example for a continuous and bijective f that is not a continuous isomorphism.
6. (Due to Meseguer) Let $A:=\left\{a_{0}, a_{1}, \ldots\right\}, B:=\left\{b_{0}, b_{1}, \ldots\right\}$ and $\{\infty\}$ be pairwise disjoint sets. Define a binary relation \sqsubseteq over $D_{0}:=A \cup B \cup\{\infty\}$ by $v \sqsubseteq w$ if and only if:

- $w=\infty$, or
- $w=v=b_{n}$, or
- $w=b_{n}$ and $v=a_{m}$, for some $n \geq m \geq 0$, or
- $w=a_{n}$ and $v=a_{m}$, for some $n \geq m \geq 0$.
(a) Show that $\left\langle D_{0}, \sqsubseteq\right\rangle$ is a domain.
(b) (optional) Draw a Hasse diagram for D_{0}.
(c) Let $\langle D, \sqsubseteq\rangle$ be any domain, and $f, g: D_{0} \rightarrow D$ two continuous functions. Show that if, for all $n, f\left(b_{n}\right)=g\left(b_{n}\right)$, then also $f(\infty)=g(\infty)$.

Supervision 2

3 Constructions on domains

1. (a) Let X be a set. Show that the discrete cpo $(X,=)$ is a cpo, and that the flat domain X_{\perp} is a domain. (cf. Slide 31.)
(b) Let X be a set and D a domain. Show that every monotone function $f: X_{\perp} \rightarrow D$ is continuous.
(c) Let $f: X \rightharpoonup Y$ be a partial function between two sets X, Y. Show that $f_{\perp}: X_{\perp} \rightarrow Y_{\perp}$ is continuous and strict. (cf. Proposition 3.1.1.)
2. (a) Show that the product and dependent product of domains is a domain. (cf. Slide 32 and Definition 3.2.3.)
(b) Show that the function if: $\mathbb{B}_{\perp} \times(D \times D) \rightarrow D$ is continuous. (cf. Proposition 3.2.2.)
3. (a) Let D, E be cpos. Show that the function cpo $(D \rightarrow E, \sqsubseteq)$ is a cpo, and justify the following rule (cf. Slide 35.):

$$
\frac{f \sqsubseteq_{(D \rightarrow E)} g \quad x \sqsubseteq_{D} y}{f(x) \sqsubseteq_{E} g(y)}
$$

(b) Let D, E be cpos. Find a necessary and sufficient condition on D and E such that $D \rightarrow E$ is a domain.
(c) Let D, E, F be domains. Recall the composition operation:

$$
\begin{aligned}
& \circ:(E \rightarrow F) \times(D \rightarrow E) \rightarrow(D \rightarrow F) \\
& g \circ f(d):=g(f(d))
\end{aligned}
$$

What do you need to do to show that \circ is well-defined? Show it.
(d) Show that \circ is continuous in each argument.
(e) Deduce the proposition on Slide 37 .
4. Solve exercise 3.4.2.
5. (a) Solve exercise 3.4.3. What is the bijection?
(b) Prove or disprove: there is a continuous isomorphism from $\Omega \rightarrow\{T\}_{\perp}$ to Ω.

4 Scott induction

1. Show that the following subsets are chain-closed:
(a) $\{\langle x, y\rangle \in D \times D \mid x \sqsubseteq y\}$, for every cpo D.
(b) $\downarrow(d):=\{x \in D \mid x \sqsubseteq d\}$ for every d in any cpo D.
(c) $f^{-1}[S]:=\{x \in D \mid f(x) \in S\}$, for every continuous function $f: D \rightarrow E$ and chain-closed subset S of E.
(d) $S \cup T$ for every chain-closed subsets S, T of any cpo D.
(e) $\bigcap_{i \in I} S_{i}$ for every I-indexed family of chain-closed subsets S_{i} of any сро D.
(f) $\{\langle x, y\rangle \in D \times D \mid x=y\}$, for every cpo D.
2. Solve exercise 4.4.2: For every subset $S \subseteq D \times D^{\prime}$, and for every $d \in D$ and $d^{\prime} \in D^{\prime}$, define:

$$
\begin{aligned}
S_{d} & :=\left\{d^{\prime} \in D^{\prime} \mid\left\langle d, d^{\prime}\right\rangle \in S\right\} \\
S^{d^{\prime}} & :=\left\{d \in D \mid\left\langle d, d^{\prime}\right\rangle \in S\right\}
\end{aligned}
$$

Give an example of a subset S that is not chain-closed, yet for every $d \in D$ and $d^{\prime} \in D^{\prime}$, both S_{d} and $S^{d^{\prime}}$ are chain-closed. (Compare this with the property of continuous functions given on Slide 33.)
3. Let D, D^{\prime} be domains. Show that a monotone function $f: D \rightarrow D^{\prime}$ is continuous and strict if and only if, for every admissible subset $S^{\prime} \subseteq D^{\prime}$, the inverse image $f^{-1}\left[S^{\prime}\right] \subseteq D$ is admissible.
4. Let $\langle D, \sqsubseteq\rangle$ be a domain and $X \subseteq D$ a subset. We define the admissible closure of X in D as the smallest admissible subset containing X :

$$
\mathrm{Cl} X:=\bigcap_{\substack{X \subseteq S \subseteq D \\ \text { is admissible }}} S
$$

(a) Show that $\mathrm{Cl} X$ is an admissible subset.
(b) Show that $\mathrm{Cl} X$ with the order induced by \sqsubseteq is a domain, and the inclusion map $\iota: \mathrm{Cl} X \rightarrow D, \iota(x):=x$ is continuous and strict.
(c) Let D^{\prime} be any other domain, and $f, g: D \rightarrow D^{\prime}$ be two strict continuous functions that agree on X, i.e.: for all $x \in X, f(x)=g(x)$. Show that f and g agree on $\mathrm{Cl} X$.
(d) Let D be a domain and $X \subseteq D$ a subset of it. Define:

$$
Y:=X \cup\{\perp\} \cup\left\{\bigsqcup_{n} x_{n} \mid x_{n} \text { is a chain in } X\right\}
$$

Show that $Y \subseteq \mathrm{Cl} X$, and find an example in which $Y \neq \mathrm{Cl} X$.
5. Let $\left\langle D_{1}, \sqsubseteq_{1}\right\rangle,\left\langle D_{2}, \sqsubseteq_{2}\right\rangle$ be two domains, and $f: D_{1} \rightarrow D_{2}$ a strict continuous function between them. We say that:

- f is full when, for all d, d^{\prime} in $D_{1}, f(d) \sqsubseteq f\left(d^{\prime}\right)$ entails $d \sqsubseteq d^{\prime}$.
- f is dense when the image $f\left[D_{1}\right]:=\left\{f(d) \mid d \in D_{1}\right\}$ satisfies:

$$
\mathrm{Cl} f\left[D_{1}\right]=D_{2}
$$

(a) Show that every full function is injective.
(b) Find a dense function that is not surjective.
(c) Let $f: D \rightarrow D^{\prime}$ be a strict continuous function. Find a domain D_{f}, a dense function $e: D \rightarrow D_{f}$ and a full function $m: D_{f} \rightarrow D^{\prime}$, such that for $f=m \circ e$, i.e., for all $d \in D, f(d)=m(e(d))$.
6. (optional) Let D, D^{\prime}, D_{1}, and D_{2} be domains, $e_{1}: D \rightarrow D_{1}, e_{2}: D \rightarrow D_{2}$ dense functions, and $m_{1}: D_{1} \rightarrow D^{\prime} m_{2}: D_{2} \rightarrow D^{\prime}$ full functions, such that:

$$
m_{1} \circ e_{1}=m_{2} \circ e_{2}
$$

Define:

$$
S_{1}:=\left\{d_{1} \in D_{1} \mid \exists d_{2} \in D_{2}: m_{1}\left(d_{1}\right)=m_{2}\left(d_{2}\right)\right\}
$$

(a) Show that S_{1} is admissible:
(b) Show that $S_{1}=D_{1}$.
(c) Define a continuous strict function $h: D_{1} \rightarrow D_{2}$, such that $h \circ e_{1}=e_{2}$ and $m_{1}=m_{2} \circ h$
(d) Show that h is a continuous isomorphism.
7. (optional, Adapted from Plotkin's Pisa notes) Let $f, g: D \rightarrow D$ be two continuous functions over a domain D.
(a) Show that $f(\operatorname{fix}(g \circ f))=\operatorname{fix}(f \circ g)$.

Hint: consider the admissible subset $\{x \in D \mid f(x) \sqsubseteq \operatorname{fix}(f \circ g)\}$.
(b) Show that if $f(\perp)=g(\perp)$ and $f \circ g=g \circ f$, then:

$$
\operatorname{fix} f=\operatorname{fix} g=\operatorname{fix}(f \circ g)
$$

Deduce that for all continuous functions $f: D \rightarrow D$, fix $f^{2}=$ fix f.
(c) Dear students: We need your help! Plotkin no longer remembers the proof for the following clause, and I (Ohad) couldn't easily reproduce it. If you can do it yourself correctly, please get in touch! Show that if $f(\perp)=g(\perp)$ and $f \circ f \circ g=g \circ f$, then fix $f=$ fix g.

Supervision 3

5 PCF: syntax and semantics

1. Solve exercise 5.7.1.
2. Solve exercise 5.7.2.
3. Solve exercise 5.7.3.
4. Solve exercise 6.5.1
5. Solve exercise 6.5.2.
6. Solve clause (c) only of Question 15, Paper 9, 2005

Note: please prove your answer.
7. Solve Question 6, from Paper 9, 2009.

Note: no need to solve clause (a)(i).

6 Logical relations and full abstraction

1. Solve exercises 7.4.1.
2. Solve exercises 7.4.2.
3. Solve exercises 7.4.3.
4. Solve exercises 8.4.1.
5. Solve exercises 8.4.2.
6. Solve exercises 8.4.3.
