Denotational semantics Exercises

Ohad Kammar (ohad.kammar@cl.cam.ac.uk)
Ian Orton (rio22@cam.ac.uk)

October 21, 2015

Supervision 1

1 Introduction

- 1. Solve exercise 1.3.1. Don't spend too much time on this exercise. A straightforward, verbose, solution shouldn't take more than 60 lines of SML.
- 2. Solve exercise 1.3.2.
- 3. Solve exercise 1.3.3.
- 4. Solve exercise 1.3.4.

2 Domains

- 1. Solve exercise 2.5.1.
- 2. Solve exercise 2.5.2. As the claims in slide 27 are already proved in the notes, there is no need to prove them.
- 3. We say that a chain, $x_0 \sqsubseteq x_1 \sqsubseteq x_2 \sqsubseteq \ldots$, is eventually constant if there exists a natural number k such that for all natural numbers $n \geq k$, we have $x_n = x_k$.
 - (a) Show that every eventually constant chain has a lub.
 - (b) Deduce that every finite poset is a cpo.
 - (c) Show that every monotone function preserves lubs of eventually constant chains.
 - (d) Deduce the following result: Let D, E be cpos such that all chains in D are eventually constant. All monotone functions $f:D\to E$ are continuous.

- 4. Solve exercise 2.5.3.
- 5. Let D, D' be domains. We say that a function $f: D \to D'$ is a continuous isomorphism if it is continuous, bijective, and its inverse $f^{-1}: D' \to D$ is also continuous.
 - (a) Show that if f is continuous and bijective, and f^{-1} is monotone, then f is a continuous isomorphism.
 - (b) Find an example for a continuous and bijective f that is not a continuous isomorphism.
- 6. (Due to Meseguer) Let $A := \{a_0, a_1, \ldots\}$, $B := \{b_0, b_1, \ldots\}$ and $\{\infty\}$ be pairwise disjoint sets. Define a binary relation \sqsubseteq over $D_0 := A \cup B \cup \{\infty\}$ by $v \sqsubseteq w$ if and only if:
 - $w = \infty$, or
 - $w=v=b_n$, or
 - $w = b_n$ and $v = a_m$, for some $n \ge m \ge 0$, or
 - $w = a_n$ and $v = a_m$, for some $n \ge m \ge 0$.
 - (a) Show that $\langle D_0, \sqsubseteq \rangle$ is a domain.
 - (b) (optional) Draw a Hasse diagram for D_0 .
 - (c) Let $\langle D, \sqsubseteq \rangle$ be any domain, and $f, g: D_0 \to D$ two continuous functions. Show that if, for all $n, f(b_n) = g(b_n)$, then also $f(\infty) = g(\infty)$.

Supervision 2

3 Constructions on domains

- 1. (a) Let X be a set. Show that the discrete cpo (X, =) is a cpo, and that the flat domain X_{\perp} is a domain. (cf. Slide 31.)
 - (b) Let X be a set and D a domain. Show that every monotone function $f:X_{\perp}\to D$ is continuous.
 - (c) Let $f: X \to Y$ be a partial function between two sets X, Y. Show that $f_{\perp}: X_{\perp} \to Y_{\perp}$ is continuous and strict. (cf. Proposition 3.1.1.)
- 2. (a) Show that the product and dependent product of domains is a domain. (cf. Slide 32 and Definition 3.2.3.)
 - (b) Show that the function $if: \mathbb{B}_{\perp} \times (D \times D) \to D$ is continuous. (cf. Proposition 3.2.2.)
- 3. (a) Let D, E be cpos. Show that the function cpo $(D \to E, \sqsubseteq)$ is a cpo, and justify the following rule (cf. Slide 35.):

$$\frac{f \sqsubseteq_{(D \to E)} g \qquad x \sqsubseteq_D y}{f(x) \sqsubseteq_E g(y)}$$

- (b) Let D, E be cpos. Find a necessary and sufficient condition on D and E such that $D \to E$ is a domain.
- (c) Let D, E, F be domains. Recall the composition operation:

$$\circ: (E \to F) \times (D \to E) \to (D \to F)$$
$$q \circ f(d) \coloneqq g(f(d))$$

What do you need to do to show that o is well-defined? Show it.

- (d) Show that \circ is continuous in each argument.
- (e) Deduce the proposition on Slide 37.
- 4. Solve exercise 3.4.2.
- 5. (a) Solve exercise 3.4.3. What is the bijection?
 - (b) Prove or disprove: there is a continuous isomorphism from $\Omega \to \{\top\}_{\perp}$ to Ω .

4 Scott induction

- 1. Show that the following subsets are chain-closed:
 - (a) $\{\langle x, y \rangle \in D \times D | x \sqsubseteq y\}$, for every cpo D.
 - (b) \downarrow (d) := $\{x \in D | x \sqsubseteq d\}$ for every d in any cpo D.
 - (c) $f^{-1}[S] := \{x \in D | f(x) \in S\}$, for every continuous function $f: D \to E$ and chain-closed subset S of E.
 - (d) $S \cup T$ for every chain-closed subsets S, T of any cpo D.
 - (e) $\bigcap_{i \in I} S_i$ for every *I*-indexed family of chain-closed subsets S_i of any cpo D.
 - (f) $\{\langle x,y\rangle \in D \times D | x=y\}$, for every cpo D.
- 2. Solve exercise 4.4.2: For every subset $S \subseteq D \times D'$, and for every $d \in D$ and $d' \in D'$, define:

$$S_d := \{ d' \in D' | \langle d, d' \rangle \in S \}$$
$$S^{d'} := \{ d \in D | \langle d, d' \rangle \in S \}$$

Give an example of a subset S that is not chain-closed, yet for every $d \in D$ and $d' \in D'$, both S_d and $S^{d'}$ are chain-closed. (Compare this with the property of continuous functions given on Slide 33.)

3. Let D, D' be domains. Show that a monotone function $f: D \to D'$ is continuous and strict if and only if, for every admissible subset $S' \subseteq D'$, the inverse image $f^{-1}[S'] \subseteq D$ is admissible.

4. Let $\langle D, \sqsubseteq \rangle$ be a domain and $X \subseteq D$ a subset. We define the *admissible closure* of X in D as the smallest admissible subset containing X:

$$\operatorname{Cl} X \coloneqq \bigcap_{\substack{X \subseteq S \subseteq D \\ \text{is admissible}}} S$$

- (a) Show that Cl X is an admissible subset.
- (b) Show that $\operatorname{Cl} X$ with the order induced by \sqsubseteq is a domain, and the inclusion map $\iota:\operatorname{Cl} X\to D,\ \iota(x)\coloneqq x$ is continuous and strict.
- (c) Let D' be any other domain, and $f,g:D\to D'$ be two strict continuous functions that agree on X, i.e.: for all $x\in X$, f(x)=g(x). Show that f and g agree on $\operatorname{Cl} X$.
- (d) Let D be a domain and $X \subseteq D$ a subset of it. Define:

$$Y := X \cup \{\bot\} \cup \left\{ \bigsqcup_{n} x_{n} \middle| x_{n} \text{ is a chain in } X \right\}$$

Show that $Y \subseteq \operatorname{Cl} X$, and find an example in which $Y \neq \operatorname{Cl} X$.

- 5. Let $\langle D_1, \sqsubseteq_1 \rangle$, $\langle D_2, \sqsubseteq_2 \rangle$ be two domains, and $f: D_1 \to D_2$ a strict continuous function between them. We say that:
 - f is full when, for all d, d' in D_1 , $f(d) \subseteq f(d')$ entails $d \subseteq d'$.
 - f is dense when the image $f[D_1] := \{f(d) | d \in D_1\}$ satisfies:

$$\operatorname{Cl} f[D_1] = D_2$$

- (a) Show that every full function is injective.
- (b) Find a dense function that is *not* surjective.
- (c) Let $f: D \to D'$ be a strict continuous function. Find a domain D_f , a dense function $e: D \to D_f$ and a full function $m: D_f \to D'$, such that for $f = m \circ e$, i.e., for all $d \in D$, f(d) = m(e(d)).
- 6. (optional) Let D, D', D_1 , and D_2 be domains, $e_1: D \to D_1$, $e_2: D \to D_2$ dense functions, and $m_1: D_1 \to D'$ $m_2: D_2 \to D'$ full functions, such that:

$$m_1 \circ e_1 = m_2 \circ e_2$$

Define:

$$S_1 := \{d_1 \in D_1 | \exists d_2 \in D_2 : m_1(d_1) = m_2(d_2)\}$$

- (a) Show that S_1 is admissible:
- (b) Show that $S_1 = D_1$.
- (c) Define a continuous strict function $h: D_1 \to D_2$, such that $h \circ e_1 = e_2$ and $m_1 = m_2 \circ h$
- (d) Show that h is a continuous isomorphism.

- 7. (optional, Adapted from Plotkin's Pisa notes) Let $f, g: D \to D$ be two continuous functions over a domain D.
 - (a) Show that $f(\operatorname{fix}(g \circ f)) = \operatorname{fix}(f \circ g)$. Hint: consider the admissible subset $\{x \in D | f(x) \sqsubseteq \operatorname{fix}(f \circ g)\}$.
 - (b) Show that if $f(\bot) = g(\bot)$ and $f \circ g = g \circ f$, then:

$$f$$
 fix $f = f$ ix $g = f$ ix $f \circ g$

Deduce that for all continuous functions $f: D \to D$, fix $f^2 = \text{fix } f$.

(c) Dear students: We need your help! Plotkin no longer remembers the proof for the following clause, and I (Ohad) couldn't easily reproduce it. If you can do it yourself correctly, please get in touch! Show that if $f(\bot) = g(\bot)$ and $f \circ f \circ g = g \circ f$, then fix f = fix g.

Supervision 3

5 PCF: syntax and semantics

- 1. Solve exercise 5.7.1.
- 2. Solve exercise 5.7.2.
- 3. Solve exercise 5.7.3.
- 4. Solve exercise 6.5.1
- 5. Solve exercise 6.5.2.
- 6. Solve clause (c) only of Question 15, Paper 9, 2005.

Note: please prove your answer.

7. Solve Question 6, from Paper 9, 2009.

Note: no need to solve clause (a)(i).

6 Logical relations and full abstraction

- 1. Solve exercises 7.4.1.
- 2. Solve exercises 7.4.2.
- 3. Solve exercises 7.4.3.
- 4. Solve exercises 8.4.1.
- 5. Solve exercises 8.4.2.
- 6. Solve exercises 8.4.3.