
A Convenient Category for
Higher-Order Probability Theory

Chris Heunen
University of Edinburgh, UK

Ohad Kammar
University of Oxford, UK

Sam Staton
University of Oxford, UK

Hongseok Yang
University of Oxford, UK

Abstract—Higher-order probabilistic programming
languages allow programmers to write sophisticated
models in machine learning and statistics in a succinct
and structured way, but step outside the standard
measure-theoretic formalization of probability theory.
Programs may use both higher-order functions and
continuous distributions, or even define a probability
distribution on functions. But standard probability the-
ory cannot support higher-order functions, that is, the
category of measurable spaces is not cartesian closed.

Here we introduce quasi-Borel spaces. We show that
these spaces: form a new formalization of probability
theory replacing measurable spaces; form a cartesian
closed category and so support higher-order functions;
form an extensional category and so support good proof
principles for equational reasoning; and support con-
tinuous probability distributions. We demonstrate the
use of quasi-Borel spaces for higher-order functions and
probability by: showing that a well-known construction
of probability theory involving random functions gains
a cleaner expression; and generalizing de Finetti’s the-
orem, that is a crucial theorem in probability theory,
to quasi-Borel spaces.

I. Introduction

To express probabilistic models in machine learning and
statistics in a succinct and structured way, it pays to use
higher-order programming languages, such as Church [16],
Venture [24], or Anglican [37]. These languages support
advanced features from both programming language the-
ory and probability theory, while providing generic infer-
ence algorithms for answering probabilistic queries, such as
marginalization and posterior computation, for all models
written in the language. As a result, the programmer
can succinctly express a sophisticated probabilistic model
and explore its properties while avoiding the nontrivial
busywork of designing a custom inference algorithm.

This exciting development comes at a foundational
price. Programs in these languages may combine higher-
order functions and continuous distributions, or even de-
fine a probability distribution on functions. But the stan-
dard measure-theoretic formalization of probability theory
cannot support higher-order functions, as the category of
measurable spaces is not cartesian closed [1]. For instance,
the Anglican implementation of Bayesian linear regression
in Figure 1 goes beyond the standard measure-theoretic
foundation of probability theory, as it defines a probability
distribution on functions R→ R.

1 (let [var (/ 1 (sample (gamma 0.1 0.1)))
2 mu (sample (normal 0.0 3))]
3 (sample (normal mu (sqrt var))))

4 (defquery Bayesian-linear-regression

5 (let [f (let [s (sample (normal 0.0 3.0))
6 b (sample (normal 0.0 3.0))]
7 (fn [x] (+ (* s x) b)))]

8 (observe (normal (f 1.0) 0.5) 2.5)
9 (observe (normal (f 2.0) 0.5) 3.8)

10 (observe (normal (f 3.0) 0.5) 4.5)
11 (observe (normal (f 4.0) 0.5) 6.2)
12 (observe (normal (f 5.0) 0.5) 8.0)

13 (predict :f f)))

Fig. 1. Bayesian linear regression in Anglican. The program defines
a probability distribution on functions R → R. It first samples a
random linear function f by randomly selecting slope s and intercept
b. It then adjusts the probability distribution of the function to better
describe five observations (1.0, 2.5), (2.0, 3.8), (3.0, 4.5), (4.0, 6.2) and
(5.0, 8.0) by posterior computation. In the graph, each line has been
sampled from the posterior distribution over functions.

We introduce a new formalization of probability theory
that accommodates higher-order functions. The main no-
tion replacing a measurable space is a quasi-Borel space:
a set X equipped with a collection of functions MX ⊆
[R→ X] satisfying certain conditions (Def. 7). Intuitively,
MX is the set of random variables of type X. Here R means
that the randomness of random variables in MX comes
from (a probability distribution on) R, one of the best
behaving measurable spaces. Thus the primitive notion
shifts from measurable subset to random variable, which
is traditionally a derived notion. For related ideas see §IX.

Quasi-Borel spaces have good properties and structure.



• The category of quasi-Borel spaces is extensional,
since a morphism is just a structure-preserving func-
tion (§III), and so it supports good proof principles
for equational reasoning (in contrast to [34, §8]).

• The category of quasi-Borel spaces is cartesian closed
(§IV), so that it becomes a setting to study probabil-
ity distributions on higher-order functions.

• There is a natural notion of probability measure on
quasi-Borel spaces (Def. 10). The space of all proba-
bility measures is again a quasi-Borel space, and forms
the basis for a commutative monad on the category of
quasi-Borel spaces (§V). Thus quasi-Borel spaces form
semantics for a probabilistic programming language
in the monadic style [26].

We also illustrate the use of quasi-Borel spaces.
• Bayesian regression (§VI). Quasi-Borel spaces are a

natural setting for understanding programs such as
the one in Figure 1: the prior (Lines 2–4) defines
a probability distribution over functions f, i.e. a
measure on RR, and the posterior (illustrated in
the graph), is again a probability measure on RR,
conditioned by the observations (Lines 5–9).

• Randomization (§VII). A key idea of categorical logic
is that ∀∃ statements should become statements
about quotients of objects. The structure of quasi-
Borel spaces allows us to rephrase a crucial random-
ization lemma in this way. Classically, it says that ev-
ery probability kernel arises from a random function.
In the setting of quasi-Borel spaces, it says that the
space of probability kernels P (R)X is a quotient of
the space of random functions, P (RX) (Theorem 25).
Notice that the higher-order structure of quasi-Borel
spaces allows us to succinctly state this result.

• De Finetti’s theorem (§VIII). Probability theorists
often encounter problems when working with arbi-
trary probability measures on arbitrary measurable
spaces. Quasi-Borel spaces allow us to better manage
the source of randomness. For example, de Finetti’s
theorem is a foundational result in Bayesian statistics
which says that all exchangeable random sequences
can be generated from independent and identically
distributed samples. The theorem is known to hold for
standard Borel spaces [8] or measurable spaces that
arise from good topologies [19], but not for arbitrary
measurable spaces [9]. We show that it holds for all
quasi-Borel spaces (Theorem 28).

All of this is evidence that quasi-Borel spaces form a
convenient category for higher-order probability theory.

II. Preliminaries on probability measures and
measurable spaces

Definition 1. The Borel sets form the family ΣR of subsets
of R inductively defined as follows:
• intervals (a, b) are Borel sets;
• complements of Borel sets are Borel;

• countable unions of Borel sets are Borel.

The Borel sets play a crucial role in probability theory
because of the tight connection between the notion of
probability measure and the axiomatization of Borel sets.

Definition 2. A probability measure on R is a function
µ : ΣR → [0, 1] satisfying µ(R) = 1 and µ(

⊎
Si) =

∑
µ(Si)

for any countable sequence of disjoint Borel sets Si.

The natural generalization gives measurable spaces.

Definition 3. A σ-algebra on a set X is a nonempty
family of subsets of X that is closed under complements and
countable unions. A measurable space is a pair (X,ΣX) of
a set X and a σ-algebra ΣX on it. A probability measure
on a measurable space X is a function µ : ΣX → [0, 1]
satisfying µ(X) = 1 and µ(

⊎
Si) =

∑
µ(Si) for any

countable sequence of disjoint sets Si ∈ ΣX .

The Borel sets of the reals form a leading example of a σ-
algebra. Other important examples are countable sets with
their discrete σ-algebra, which contains all subsets. We can
characterize these spaces as standard Borel spaces, but
first introduce the appropriate structure-preserving maps.

Definition 4. Let (X,ΣX) and (Y,ΣY ) be measurable
spaces. A measurable function f : X → Y is a function
such that f -1(U) ∈ ΣX when U ∈ ΣY .

Thus a measurable function f : X → Y lets us push-
forward a probability measure µ on X to a probability
measure f∗µ on Y by (f∗µ)(U) = µ(f -1(U)). Measurable
spaces and measurable functions form a category Meas.

Real-valued measurable functions f : X → R can be
integrated with respect to a probability measure µ on
(X,ΣX). The integral of a nonnegative function f is∫

X

f dµ def= sup
{Ui}

∑
i

(
µ(Ui) · inf

x∈Ui

f(x)
)

,

where {Ui} ranges over the finite partitions of X consisting
of measurable subsets. When f may be negative, the
integral of f is defined if those of min(0, f) and min(0,−f)
are finite, in which case∫

X

f dµ def=
(∫

X

min(0, f) dµ
)
−
(∫

X

min(0,−f) dµ
)

.

When it is convenient to make the integrated variable ex-
plicit, we write

∫
x∈U f(x) dµ for

∫
X

(λx. f(x) · [x ∈ U ]) dµ,
where U ∈ ΣX is a measurable subset and [ϕ] has the
value 1 if ϕ holds and 0 otherwise.

A. Standard Borel spaces
Proposition 5 (e.g. [23], App. A1). For a measurable
space (X,ΣX) the following are equivalent:
• (X,ΣX) is a retract of (R,ΣR), that is, there exist

measurable X f−→ R g−→ X such that g ◦ f = idX ;
• (X,ΣX) is either measurably isomorphic to (R,ΣR) or

countable and discrete;



• X has a complete metric with a countable dense subset
such that ΣX is freely generated by the open sets.

When (X,ΣX) satisfies any of the above conditions,
we call it standard Borel space. These spaces play an
important role in probability theory because they en-
joy properties that do not hold for general measurable
spaces, such as the existence of conditional probability
kernels [23], [28] and de Finetti’s theorem for exchangeable
random processes [9].

Besides R, another popular uncountable standard Borel
space is (0, 1) with the σ-algebra {U ∩ (0, 1) | U ∈ ΣR}.
As the above proposition indicates, these spaces are iso-
morphic by, for instance, λr. 1

(1+e−r) : R→ (0, 1).

B. Failure of cartesian closure
Proposition 6 (Aumann, [1]). The category Meas is not
cartesian closed: there is no space of functions R→ R.

Specifically, the evaluation function

ε : Meas(R,R)× R→ R with ε(f, r) = f(r)

is never measurable (Meas(R,R)×R,Σ⊗ΣR)→ (R,ΣR)
regardless of the choice of σ-algebra Σ on Meas(R,R).
Here, Σ ⊗ ΣR is the product σ-algebra, generated by
rectangles (U × V ) for U ∈ Σ and V ∈ ΣR.

III. Quasi-Borel spaces
The typical situation in probability theory is that there

is a fixed measurable space (Ω,ΣΩ), called sample space,
from which all randomness originates, and that obser-
vations are made in terms of random variables, which
are pairs (X, f) of a measurable space of observations
(X,ΣX) and a measurable function f : Ω → X. From
this perspective, the notion of measurable function is more
important than the notion of measurable space. In some
ways, the σ-algebra ΣX is only used as an intermediary to
restrain the class of measurable functions Ω→ X.

We now use this idea as a basis for our new notion of
space. In doing so, we assume that our sample space Ω is
the real numbers, which makes probabilities behave well.

Definition 7. A quasi-Borel space is a set X together with
a set MX ⊆ [R→ X] satisfying:
• α ◦ f ∈MX if α ∈MX and f : R→ R is measurable;
• α ∈MX if α : R→ X is constant;
• if R =

⊎
i∈N Si, with each set Si Borel, and

α1, α2, . . . ∈MX , then β is in MX , where β(r) = αi(r)
for r ∈ Si.

The name ‘quasi-Borel space’ is motivated firstly by
analogy to quasi-topological spaces (see §IX), and secondly
in recognition of the intimate connection to the standard
Borel space R (see also Prop. 14(2)).

Example 8. For every measurable space (X,ΣX), let
MΣX

be the set of measurable functions R→ X. Thus MΣX

is the set of X-valued random variables. In particular, R

itself can be considered as a quasi-Borel space, with MR the
set of measurable functions R→ R.

For another example, the two-element discrete space 2
can be considered as a quasi-Borel space, with M2 the set
of measurable functions R → 2, which are exactly the
characteristic functions of the Borel sets (Def. 1).

Before we continue, we remark that the notion of quasi-
Borel space is invariant under replacing R with a different
uncountable standard Borel space.

Proposition 9. For an uncountable standard Borel space
(Ω,ΣΩ), a set X, and a set N of functions Ω→ X,(

X, {α ◦ f | f : R→ Ω measurable, α ∈ N}
)

is a quasi-Borel space if and only if:
• α ◦ f ∈ N if α ∈ N and f : Ω→ Ω is measurable;
• α ∈ N if α : Ω→ X is constant;
• if Ω =

⊎
i∈N Si, with each set Si ∈ ΣΩ, and

α1, α2, . . . ∈ N , then β is in N , where β(r) = αi(r) if
r ∈ Si.

Probability theory typically considers a basic probabil-
ity measure on the sample space Ω. Each random variable,
that is each measurable function Ω → X, then induces a
probability measure on X by pushing forward the basic
measure. Quasi-Borel spaces take this idea as an axiomatic
notion of probability measure.

Definition 10. A probability measure on a quasi-Borel
space (X,MX) is a pair (α, µ) of α ∈MX and a probability
measure µ on R (as in Def. 2).

A. Morphisms and integration
Definition 11. A morphism of quasi-Borel spaces
(X,MX) → (Y,MY ) is a function f : X → Y such that
f ◦ α ∈ MY if α ∈ MX . Write QBS

(
(X,MX), (Y,MY )

)
for the set of morphisms from (X,MX) to (Y,MY ).

In particular, elements of MX are precisely morphisms
(R,MR)→ (X,MX), so MX = QBS

(
(R,MR), (X,MX)

)
.

Morphisms compose as functions, and identity functions
are morphisms, so that quasi-Borel spaces and their mor-
phisms form a category QBS. Also, Def. 11 is independent
of our choice of R as the sample space.

Proposition 12. Consider an uncountable standard Borel
space (Ω,ΣΩ). For i ∈ 1, 2, let Xi be a set and Ni a set of
functions Ω→ Xi such that

Mi =
(
Xi, {α ◦ f | f : R→ Ω measurable, α ∈ Ni}

)
are quasi-Borel spaces. A function g : X1 → X2 is a
morphism (X1,M1) → (X2,M2) if and only if g ◦ α ∈ N2
for all α ∈ N1.

Morphisms between quasi-Borel spaces are analogous
to measurable functions between measurable spaces. The
crucial properties of measurable functions are that they
work well with probability measures: we can push-forward



these measures, and integrate over them. Morphisms of
quasi-Borel spaces also support these constructions.
• Pushing forward: if f : X → Y is a morphism and

(α, µ) is a probability measure on X then f ◦ α is
by definition in MY and so (f ◦ α, µ) is a probability
measure on Y .

• Integrating: If f : X → R is a morphism of quasi-Borel
spaces and (α, µ) is a probability measure on X, the
integral of f with respect to (α, µ) is∫

f d(α, µ) def=
∫
R

(f ◦ α) dµ. (1)

So integration formally reduces to integration on R.

B. Relationship to measurable spaces
If we regard a subset S ⊆ X as its characteristic function

χS : X → 2, then we can regard a σ-algebra on a set X as
a set of characteristic functions FX ⊆ [X → 2] satisfying
certain conditions. Thus a measurable space (Def. 3) could
equivalently be described as a pair (X,FX) of a set X and
a collection FX ⊆ [X → 2] of characteristic functions.
Moreover, from this perspective, a measurable function
f : (X,FX) → (Y, FY ) is simply a function f : X → Y
such that χ ◦ f ∈ FX if χ ∈ FY . Thus quasi-Borel spaces
shift the emphasis from characteristic functions X → 2 to
random variables R→ X.

1) Quasi-Borel spaces as structured measurable spaces:
A subset S ⊆ X is in the σ-algebra ΣX of a measurable
space (X,ΣX) if and only if its characteristic function
X → 2 is measurable. With this in mind, we define a
measurable subset of a quasi-Borel space (X,MX) to be a
subset S ⊆ X such that the characteristic function X → 2
is a morphism of quasi-Borel spaces.

Proposition 13. The collection of all measurable subsets
of a quasi-Borel space (X,MX) is characterized as

ΣMX

def= {U | ∀α ∈MX . α
-1(U) ∈ ΣR} (2)

and forms a σ-algebra.

Thus we can understand a quasi-Borel space as a mea-
surable space (X,ΣX) equipped with a class of measurable
functions MX ⊆ [R → X] generating the σ-algebra by
ΣX = ΣMX

as in (2).
Moreover, every morphism (X,MX) → (Y,MY ) is also

a measurable function (X,ΣMX
) → (Y,ΣMY

) (but the
converse does not hold in general).

A probability measure (α, µ) on a quasi-Borel space
(X,MX) induces a probability measure α∗µ on the un-
derlying measurable space. Integration as in (1) matches
the standard definition for measurable spaces.

2) An adjunction embedding standard Borel spaces: Un-
der some circumstances morphisms of quasi-Borel spaces
coincide with measurable functions.

Proposition 14. Let (Y,ΣY ) be a measurable space.

1) If (X,MX) is a quasi-Borel space, a function X → Y
is a measurable function (X,ΣMX

)→ (Y,ΣY ) if and
only if it is a morphism (X,MX)→ (Y,MΣY

).
2) If (X,ΣX) is a standard Borel space, a function X →

Y is a morphism (X,MΣX
)→ (Y,MΣY

) if and only
if it is a measurable function (X,ΣX)→ (Y,ΣY ).

Proposition 14(1) means there is an adjunction

Meas
R

22 QBS
L

⊥
rr

where L(X,MX) = (X,ΣMX
) and R(X,ΣX) = (X,MΣX

).
Proposition 14(2) means that the functor R is full and
faithful when restricted to standard Borel spaces. Equiv-
alently, L(R(X,ΣX)) = (X,ΣX), that is ΣX = ΣMΣX

for
standard Borel spaces (X,ΣX).

IV. Products, coproducts and function spaces
Quasi-Borel spaces support products, coproducts, and

function spaces. These basic constructions form the basis
for interpreting simple type theory in quasi-Borel spaces.

Proposition 15 (Products). If (Xi,MXi)i∈I is a family of
quasi-Borel spaces indexed by a set I, then (

∏
iXi,MΠiXi

)
is a quasi-Borel space, where

∏
iXi is the set product, and

MΠiXi

def=
{
f : R→

∏
iXi | ∀i. (πi ◦ f) ∈MXi

}
.

The projections
∏
iXi → Xi are morphisms, and provide

the structure of a categorical product in QBS.

Proposition 16 (Coproducts). If (Xi,MXi)i∈I is a family
of quasi-Borel spaces indexed by a countable set I, then
(
∐
iXi,MqiXi

) is a quasi-Borel space, where
∐
iXi is the

disjoint union of sets,

MqiXi

def= {λr. (f(r), αf(r)(r)) | f : R→ I is measurable,
(αi ∈MXi

)i∈image(f)},

and I carries the discrete σ-algebra. This space has the
universal property of a coproduct in the category QBS.

Proof notes. The third condition of quasi-Borel spaces is
needed here. It is a crucial step in showing that for an
I-indexed family of morphisms (fi : Xi → Z)i∈I , the
copairing [fi]i∈I :

∐
i∈I Xi → Z is again a morphism.

Proposition 17 (Function spaces). If (X,MX) and
(Y,MY ) are quasi-Borel spaces, so is (Y X ,MY X ), where
Y X

def= QBS(X,Y ) is the set of morphisms X → Y , and

MY X
def= {α : R→ Y X | uncurry(α) ∈ QBS(R×X,Y )}.

The evaluation function Y X ×X → Y is a morphism and
has the universal property of the function space. Thus QBS
is a cartesian closed category.

Proof notes. The only difficult part is showing that
(Y X ,MY X ) satisfies the third condition of quasi-Borel
spaces. Prop. 16 is useful here.



A. Relationship with standard Borel spaces
Recall that standard Borel spaces can be thought of as

a full subcategory of the quasi-Borel spaces, that is, the
functor R : Meas→ QBS is full and faithful (Prop. 14(2))
when restricted to the standard Borel spaces. This full
subcategory has the same countable products, coproducts
and function spaces (whenever they exist). We may thus
regard quasi-Borel spaces as a conservative extension of
standard Borel spaces that supports simple type theory.

Proposition 18. The functor R(X,ΣX) = (X,MΣX
):

1) preserves products of standard Borel spaces:
R(
∏
iXi) =

∏
iR(Xi), where (Xi,ΣXi

)i∈I is a
countable family of standard Borel spaces;

2) preserves spaces of functions between standard Borel
spaces whenever they exist: if (Y,ΣY ) is countable
and discrete, and (X,ΣX) is standard Borel, then
R(XY ) = R(X)R(Y );

3) preserves coproducts of standard Borel spaces:
R(
∐
iXi) =

∐
iR(Xi), where (Xi,ΣXi

)i∈I is a
countable family of standard Borel spaces.

Consequently, a standard programming language se-
mantics in standard Borel spaces can be conservatively
embedded in quasi-Borel spaces, allowing higher-order
functions while preserving all the type theoretic structure.

We note, however, that in light of Prop. 6, the quasi-
Borel space RR does not come from a standard Borel space.
Moreover, the left adjoint L : QBS→Meas does not pre-
serve products in general. For quasi-Borel spaces (X,MX)
and (Y,MY ), we always have ΣMX

⊗ΣMY
⊆ ΣMX×Y

, but
not always ⊇. Indeed, ΣMRR

⊗ΣR 6= ΣM(RR×R)
, by Prop. 6.

V. A monad of probability measures
In this section we will show that the probability mea-

sures on a quasi-Borel space form a quasi-Borel space
again. This gives a commutative monad that generalizes
the Giry monad for measurable spaces [15].

A. Monads
We use the Kleisli triple formulation of monads (see

e.g. [26]). Recall that a monad on a category C comprises
• for any object X, an object T (X);
• for any object X, a morphism η : X → T (X);
• for any objects X,Y , a function

(>>=) : C(X,T (Y ))→ C(T (X), T (Y )).

We write (t>>=f) for (>>=)(f)(t).
This is subject to the conditions (t>>=η) = t, (η(x)>>=f) =
f(x), and t >>= (λx. (f(x) >>= g)) = (t >>= f) >>= g.

The intuition is that T (X) is an object of computations
returning X, that η is the computation that returns
immediately, and that t>>=f sequences computations, first
running computation t and then calling f with the result.

When C is cartesian closed, a monad is strong if (>>=) in-
ternalizes to an operation (>>=) : (T (Y ))X → (T (Y ))T (X),

and then the conditions are understood as expressions in
a cartesian closed category.

B. Kernels and the Giry monad
We recall the notion of probability kernel, which is a

measurable family of probability measures.

Definition 19. Let (X,ΣX) and (Y,ΣY ) be measurable
spaces. A probability kernel from X to Y is a function
k : X ×ΣY → [0, 1] such that k(x,−) is a probability mea-
sure for all x ∈ X (Def. 3), and k(−, U) is a measurable
function for all U ∈ ΣY (Def. 4).

We can classify probability kernels as follows. Let
G(X) be the set of probability measures on (X,ΣX).
We can equip this set with the σ-algebra generated by
{µ ∈ G(X) | µ(U) < r}, for U ∈ ΣX and r ∈ [0, 1], to form
a measurable space (G(X),ΣG(X)). A measurable function
X → G(Y ) amounts to a probability kernel from X to Y .

The construction G has the structure of a monad, as
first discussed by Giry and Lawvere [15]. A computational
intuition is that G(X) is a space of probabilistic compu-
tations over X, and this provides a semantic foundation
for a first-order probabilistic programming language (see
e.g. [34]). The unit η : X → G(X) lets η(x) be the Dirac
measure on x, with η(x)(U) = 1 if x ∈ U , and η(x)(U) = 0
if x 6∈ U . If µ ∈ G(X) and k is a measurable function
X → G(Y ), then (µ>>=Gk) is the measure in G(Y ) with
(µ>>=Gk)(U) =

∫
x∈X k(x)(U) dµ.

C. Equivalent measures on quasi-Borel spaces
Recall (Def. 10) that a probability measure (α, µ) on a

quasi-Borel space (X,MX) is a pair (α, µ) of a function
α ∈ MX and a probability measure µ on R. Random
variables are often equated when they describe the same
distribution. Every probability measure (α, µ) determines
a push-forward measure α∗µ on the corresponding mea-
surable space (X,ΣMX

), that assigns to U ⊆ X the real
number µ(α−1(U)). We will identify two probability mea-
sures when they define the same push-forward measure,
and write ∼ for this equivalence relation.

This is a reasonable notion of equality even if we
put aside the notion of measurable space, because two
probability measures have the same push-forward measure
precisely when they have the same integration operator:
(α, µ) ∼ (α′, µ′) if and only if

∫
f d(α, µ) =

∫
f d(α′, µ′)

for all morphisms f : (X,MX)→ R.

D. A probability monad
We now explain how to build a monad of probability

measures on the category of quasi-Borel spaces, modulo
this notion of equivalence. This monad P will inherit
properties from the Giry monad. Technically, the functor
L : QBS → Meas (Prop. 14) is a ‘monad opfunctor’
taking P to the Giry monad G, which means that it
extends to a functor from the Kleisli category of P to the
Kleisli category of G [36].



a) On objects: For a quasi-Borel space (X,MX), let

P (X) = {(α, µ) probability measure on (X,MX)}/ ∼ ,
MP (X) = {β : R→ P (X) | ∃α ∈MX .∃g ∈Meas(R, G(R)).

∀r ∈ R. β(r) = [α, g(r)]}.

Note that

P (X) ∼= {α∗µ ∈ G(X,ΣMX
) | α ∈MX , µ ∈ G(R)} (3)

so lX([α, µ]) = α∗µ defines a measurable injection
lX : L(P (X))� G(X,ΣMX

).
b) Monad unit (return): Recall that the constant

functions (λr.x) are all in MX . For any measure µ on R,
the push-forward measure (λr.x)∗ µ on (X,ΣMX

) is the
Dirac measure on x, with ((λr.x)∗ µ)(U) = 1 if x ∈ U and
0 otherwise. Thus (λr.x, µ) ∼ (λr.x, µ′) for all measures
µ, µ′ on R. The unit of P at (X,MX) is the morphism
η : X → P (X) given by

η(X,MX)(x) = [λr.x, µ] (4)

for an arbitrary measure µ on R.
c) Bind: To define (>>=) : P (Y )X → (P (Y ))P (X), sup-

pose f : X → P (Y ) is a morphism and [α, µ] in P (X).
Since f is a morphism, there is a measurable g : R→ G(R)
and a function β ∈ MY such that (f ◦ α)(r) = [β, g(r)].
Set ([α, µ] >>= f) = [β, µ >>=G g], where µ >>=G g is the bind
of the Giry monad. This matches the bind of the Giry
monad, since ((α∗µ) >>=G (lY ◦ f)) = β∗(µ >>=G g).

Theorem 20. The data (P, η, (>>=)) above defines a strong
monad on the category QBS of quasi-Borel spaces.

Proof notes. The monad laws can be reduced to the laws
for the monad G on Meas [15]. The monad on QBS
is strong because (>>=) : P (Y )X → (P (Y ))P (X) is a mor-
phism, which is shown by expanding the definitions.

Proposition 21. The monad P satisfies these properties:
1) For f : (X,MX) → (Y,MY ), the functorial action

P (f) : P (X)→ P (Y ) is [α, µ] 7→ [f ◦ α, µ].
2) It is a commutative monad, i.e. the order of sequenc-

ing doesn’t matter: if p ∈ P (X), q ∈ P (Y ), and f is
a morphism X × Y → P (Z), then p >>= λx. q >>=
λy. f(x, y) equals q >>= λy. p >>= λx. f(x, y).

3) The faithful functor L : QBS→Meas with
L(X,MX) = (X,ΣMX

) extends to a faithful
functor Kleisli(P )→ Kleisli(G), i.e. (L, l) is a monad
opfunctor [36].

4) When (X,ΣX) is a standard Borel space, the map lX
of Eq. (3) is a measurable isomorphism.

VI. Example: Bayesian regression
We are now in a position to explain the semantics of

the Anglican program in Figure 1. The program can be
split into three parts: a prior, a likelihood, and a posterior.
Recall that Bayes’ law says that the posterior is propor-
tionate to the product of the prior and the posterior.

Fig. 2. Illustration of 1000 sampled functions from the prior on RR

for Bayesian linear regression (5).

a) Prior: Lines 2–4 define a prior measure on RR:

prior def= (let [s (sample (normal 0.0 3.0))
b (sample (normal 0.0 3.0))]

(fn [x] (+ (* s x) b)))

To describe this semantically, observe the following.

Proposition 22. Let (Ω,ΣΩ) be a standard Borel space,
and (X,MX) a quasi-Borel space. Let α : R(Ω,ΣΩ) → X
be a morphism and µ a probability measure on (Ω,ΣΩ).
Any section-retraction pair (Ω ς−→ R ρ−→ Ω) = idΩ has a
probability measure [α◦ρ, ς∗µ] ∈ P (X), that is independent
of the choice of ς and ρ.

Write [α, µ] for the probability measure in this case.
Now, the program fragment prior describes the distribu-

tion [α, ν⊗ν] in P (RR) where ν is the normal distribution
on R with mean 0 and standard deviation 3, and where
α : R×R→ RR is given by α(s, b) def= λr. s·r+b. Informally,

JpriorK = [α, ν ⊗ ν] ∈ P (RR). (5)

Figure 2 illustrates this measure [α, ν ⊗ ν]. This deno-
tational semantics can be made compositional, by using
the commutative monad structure of P and the cartesian
closed structure of the category QBS (following e.g. [26],
[34]), but in this paper we focus on this example rather
than spelling out the general case once again.

b) Likelihood: Lines 5–9 define the likelihood of the
observations:

obs def= (observe (normal (f 1.0) 0.5) 2.5)

. . . (observe (normal (f 5.0) 0.5) 8.0)

This program fragment has a free variable f of type RR.
Let us focus on line 5 for a moment:

obs1
def= (observe (normal (f 1.0) 0.5) 2.5)

Given a function f : R→ R, the likelihood of drawing 2.5
from a normal distribution with mean f(1.0) and standard
deviation 0.5 is

Jf : RR ` obs1K = d(f(1.0), 2.5),



where d : R2 → [0,∞) is the density of the normal
distribution function with standard deviation 0.5:

d(µ, x) =
√

2
π e
−2(x−µ)2

.

Notice that we use a normal distribution to allow for some
noise in the measurement. Informally, we are not recording
an observation that f(1.0) is exactly 2.5, since this would
make regression impossible; rather, f(1.0) is roughly 2.5.

Overall, lines 5–9 describe a likelihood weight which is
the product of the likelihoods of the five data points, given
f : RR.

Jf : RR ` obsK = d(f(1), 2.5) · d(f(2), 3.8) · d(f(3), 4.5)
· d(f(4), 6.2) · d(f(5), 8.0).

c) Posterior: We follow the recipe for a semantic
posterior given in [34]. Putting the prior and likelihood to-
gether gives a probability measure in P (RR×[0,∞)) which
is found by pushing forward the measure JpriorK ∈ P (R)
along the function (id , JobsK) : RR → RR × [0,∞). This
push-forward measure

P (id , JobsK) (JpriorK) ∈ P (RR × [0,∞))

is a measure over pairs (f, w) of functions together with
their likelihood weight. We now find the posterior by
multiplying the prior and the likelihood, and dividing by
a normalizing constant. To do this we define a morphism
norm : P (X × [0,∞))→ P (X) ] {error} by

norm([(α, β), ν]) def=
{

[α, νβ/(νβ(R))] if 0 6= νβ(R) 6=∞
error otherwise

where νβ : ΣR → [0,∞] def= λU.
∫
r∈U (β(r)) dν. The idea is

that if β : R → [0,∞) and ν is a probability measure on
R then νβ is always a posterior measure on R, but it is
typically not normalized, i.e. νβ(R) 6= 1. We normalize it
by dividing by the normalizing constant, as long as this
division is well-defined.

Now, the semantics of the entire program in Figure 1
is norm(P (id , JobsK) (JpriorK)), which is a measure in
P (RR). Calculating this posterior using Anglican’s infer-
ence algorithm lmh gives the plot in the lower half of
Figure 1.

d) Defunctionalized regression and non-linear regres-
sion: Of course, one can do regression without explicitly
considering distributions over the space of all measurable
functions, by instead directly calculating posterior distri-
butions for the slope s and the intercept b. For example,
one could defunctionalize the program in Fig. 1 in the
style of Reynolds [29]. But defunctionalization is a whole-
program transformation. By structuring the semantics
using quasi-Borel spaces, we are able to work composition-
ally, without mentioning s and b explicitly on lines 5–10.
The internal posterior calculations actually happen at the
level of standard Borel spaces, and so a defunctionalized
version would be in some sense equivalent, but from the

programming perspective it helps to abstract away from
this. The regression program in Fig. 1 is quickly adapted
to fit other kinds of functions, e.g. polynomials, or even
programs from a small domain-specific language, simply
by changing the prior in Lines 2–4.

VII. Random functions
We discuss random variables and random functions,

starting from the traditional setting. Let (Ω,ΣΩ) be a
measurable space with a probability measure. A random
variable is a measurable function (Ω,ΣΩ) → (X,ΣX). A
random function between measurable spaces (X,ΣX) and
(Y,ΣY ) is a measurable function (Ω × X,ΣΩ ⊗ ΣX) →
(Y,ΣY ).

We can push forward a probability measure on Ω along
a random variable (Ω,ΣΩ)→ (X,ΣX) to get a probability
measure on X, but in the traditional setting we cannot
push forward a measure along a random function. Mea-
surable spaces are not cartesian closed (Prop. 6), and so
we cannot form a measurable space Y X and we cannot
curry a random function in general.

Now, if we revisit these definitions in the setting of
quasi-Borel spaces, we do have function spaces, and so we
can push forward along random functions. In fact, this
is somewhat tautologous because a probability measure
(Def. 10) on a function space is essentially the same thing
as random function: a probability measure on a function
space (Y,ΣY )(X,ΣX) is defined to be a pair (f, µ) of a
probability measure µ on R, our sample space, and a
morphism f : R→ Y X ; but to give a morphism R→ Y X

is to give a morphism R × X → Y (Prop. 17) as in the
traditional definition of random function.

We have already encountered an example of a random
function in Section VI: the prior for linear regression is a
random function from R to R over the measurable space
(R× R,ΣR ⊗ ΣR) with the measure ν ⊗ ν. Random func-
tions abound throughout probability theory and stochastic
processes. The following section explores their use in the
so-called randomization lemma, which is used throughout
probability theory. By moving to quasi-Borel spaces, we
can state this lemma succinctly (Theorem 25).

A. Randomization
An elementary but useful trick in probability theory is

that every probability distribution on R arises as a push-
forward of the uniform distribution on [0, 1]. Even more
useful is that this can be done in a parameterized way.

Proposition 23 ([23], Prop. 3.22). Let (X,ΣX) be
a measurable space. For any kernel k : X × ΣR → [0, 1]
there is a measurable function f : R×X → R such that
k(x, U) = υ{r | f(r, x) ∈ U}, where υ is the uniform dis-
tribution on [0, 1].

For quasi-Borel spaces we can phrase this more suc-
cinctly: it is a result about a quotient of the space of
random functions. We first define quotient spaces.



Proposition 24. Let (X,MX) be a quasi-Borel space, let
Y be a set, and let q : X → Y be a surjection. Then (Y,MY )
is a quasi-Borel space with MY = {q ◦ α | α ∈MX}.

We call such a space a quotient space.

Theorem 25. Let (X,MX) be a quasi-Borel space. The
space (P (R))X of kernels is a quotient of the space P (RX)
of random functions.

Before proving this theorem, we use Prop. 23 to give an
alternative characterization of our probability monad.

Lemma 26. Let (X,MX) be a quasi-Borel space. The
function q : XR → P (X) given by q(α) def= [α, υ] is a sur-
jection, with corresponding quotient space (P (X),MP (X)):

MP (X) = {λr ∈ R. [γ(r), υ] | γ ∈MXR}, (6)

where υ is the uniform distribution on [0, 1].

Proof notes. The direction (⊆) follows immediately from
Prop. 23. For the direction (⊇) we must consider γ ∈MXR

and show that (λr ∈ R. [γ(r), υ]) is in MP (X). This follows
by considering the kernel k : R → G(R × R) with k(r) =
υ ⊗ δr, so that [γ(r), υ] = [uncurry(γ), k(r)]. Here we are
using Prop. 22.

Proof of Theorem 25. Consider the evident morphism
q : P (RX) → (P (R))X that comes from the monadic
strength. That is, (q([α, µ]))(x) = [λr. α(r)(x), µ]. We
show that q is a quotient morphism.

We first show that q is surjective. To give a morphism
k : (X,MX) → P (R) is to give a measurable function
(X,ΣMX

)→ G(R), since (P (R),MP (R)) ∼= (G(R),MΣG(R))
(Prop. 4(4)) and by using the adjunction between measur-
able spaces and quasi-Borel spaces (Prop. 14(1)). Directly,
we understand a morphism k : (X,MX) → P (R) as the
kernel k] : X × ΣR → [0, 1] with k](x, U) def= µx(α-1

x (U))
whenever k(x) = [αx, µx]. The definition of k] does not
depend on the choice of αx, µx.

Now we can use the randomization lemma (Prop. 23)
to find a measurable function fk] : R × X → R such
that k](x, U) = υ{r | fk](r, x) ∈ U}. In general, if a
function Y ×X → Z is jointly measurable then it is also
a morphism from the product quasi-Borel space (but the
converse is unknown). So fk] is a morphism, and we can
form (curryfk]) : R→ RX . So,

q([curryfk] , υ])(x) = [λr.curryfk](r)(x), υ]
= [λr.fk](r, x), υ] = k(x),

and q is surjective, as required.
Finally we show that M(P (R))X = {q ◦α | α ∈MP (RX)}.

We have (⊇) since q is a morphism, so it remains to
show (⊆). Consider β ∈ M(P (R))X . We must show that
β = q◦α for some α ∈MP (RX). By Prop. 17, β ∈M(P (R))X

means the uncurried function (uncurry β) : R×X → P (R)
is a morphism. As above, this morphism corresponds to

a kernel (uncurry β)] : (R × X) × ΣR → [0, 1]. The ran-
domization lemma (Prop. 23) gives a measurable function
fβ : R × (R ×X) → R such that (uncurry β)]((r, x), U) =
υ{s | fβ(s, (r, x)) ∈ U}. By Prop. 14(1) and the fact that
the σ-algebra of a product quasi-Borel space R× (R×X)
includes the product σ-algebras ΣR ⊗ ΣMR×X

, this func-
tion fβ is also a morphism. Define γ : R → (RX)R by
γ = λr. λs. λx. fβ(s, (r, x)). This is a morphism since we
can interpret λ-calculus in a cartesian closed category.
Define α : R→ P (RX) by α(r) = [γ(r), υ]; this function is
in MP (RX) by Lemma 26. A direct calculation now gives
β = q ◦ α, as required.

VIII. De Finetti’s theorem
De Finetti’s theorem [8] is one of the foundational re-

sults in Bayesian statistics. It says that every exchangeable
sequence of random observations on R or another well-
behaved measurable space can be modeled accurately by
the following two-step process: first choose a probability
measure on R randomly (according to some distribution
on probability measures) and then generate a sequence
with independent samples from this measure. Limiting
observations to values in a well-behaved space like R in
the theorem is important: Dubins and Freedman proved
that the theorem fails for a general measurable space [9].

In this section, we show that a version of de Finetti’s
theorem holds for all quasi-Borel spaces, not just R. Our
result does not contradict Dubins and Freedman’s obstruc-
tion; probability measures on quasi-Borel spaces may only
use R as their source of randomness, whereas those on
measurable spaces are allowed to use any measurable space
for the same purpose. As we will show shortly, this careful
choice of random source makes it possible to generalize
key arguments behind a proof of de Finetti’s theorem [2]
to quasi-Borel spaces.

Let (X,MX) be a quasi-Borel space and (Xn,MXn) the
product quasi-Borel space

∏n
i=1X for each positive integer

n. Recall that P (X) consists of equivalence classes [β, ν]
of probability measures (β, ν) on X. For n ≥ 1, define a
morphism iidn : P (X)→ P (Xn) by

iidn([β, ν]) =
[
(
∏n
i=1 β ◦ ιn) ,

((
ι-1n
)
∗
⊗n

i=1 ν
)]

where ιn is a measurable isomorphism R →
∏n
i=1 R, and⊗n

i=1 ν is the product measure formed by n copies of
ν. The name iidn represents ‘independent and identically
distributed’. Indeed, iidn transforms a probability measure
(β, ν) on X to the measure of the random sequence in Xn

that independently samples from (β, ν). The function iidn
is a morphism P (X) → P (Xn) because it can also be
written in terms of the strength of the monad P .

Write (Xω,MXω ) for the countable product
∏∞
i=1X.

Definition 27. A probability measure (α, µ) on Xω is
exchangeable if for all permutations π on positive integers,
[α, µ] = [απ, µ], where απ(r)i

def= α(r)π(i) for all r and i.



Theorem 28 (Weak de Finetti for quasi-Borel spaces). If
(α, µ) is an exchangeable probability measure on Xω, then
there exists a probability measure (β, ν) in P (P (X)) such
that for all n ≥ 1, the measure ([β, ν] >>= iidn) on P (Xn)
equals P ((−)1...n)(α, µ) when considered as a measure
on the product measurable space (Xn,

⊗n
i=1 ΣMX

). (Here
(−)1...n : Xω → Xn is (x)1...n

def= (x1, . . . , xn).)

In the theorem, (β, ν) represents a random variable that
has a probability measure on X as its value. The theorem
says that (every finite prefix of) a sample sequence from
(α, µ) can be generated by first sampling a probability
measure on X according to (β, ν), then generating inde-
pendent X-valued samples from the measure, and finally
forming a sequence with these samples.

We call the theorem weak for two reasons. First, the σ-
algebra ΣMXn includes the product σ-algebra

⊗n
i=1 ΣMX

,
but we do not know that they are equal; two different prob-
ability measures in P (Xn) may induce the same measure
on (Xn,

⊗n
i=1 ΣMX

), although they always induce differ-
ent measures on (Xn,ΣMXn ). In the theorem, we equate
such measures, which lets us use a standard technique for
proving the equality of measures on product σ-algebras.
Second, we are unable to construct a version of iidn for
infinite sequences, i.e. a morphism P (X)→ P (Xω) imple-
menting the independent identically-distributed random
sequence. The theorem is stated only for finite prefixes.

The rest of this section provides an overview of our proof
of Theorem 28. The starting point is to unpack definitions
in the theorem, especially those related to quasi-Borel
spaces, and to rewrite the statement of the theorem purely
in terms of standard measure-theoretic notions.

Lemma 29. Let (α, µ) be an exchangeable probability
measure on Xω. Then, the conclusion of Theorem 28 holds
if and only if there exist a probability measure ξ ∈ G(R), a
measurable function k : R→ G(R), and γ ∈MX such that
for all n ≥ 1 and all U1, . . . , Un ∈ ΣMX

,∫
r∈R

(
n∏
i=1

[α(r)i ∈ Ui]
)

dµ

=
∫
r∈R

n∏
i=1

(∫
s∈R

[γ(s) ∈ Ui] d(k(r))
)

dξ.

Here we express the domain of integration and the inte-
grated variable explicitly to avoid confusion.

Proof. Let (α, µ) be an exchangeable probability measure
on Xω. We unpack definitions in the conclusion of Theo-
rem 28. The first definition to unpack is the notion of prob-
ability measure in P (P (X)). Here are the crucial facts that
enable this unpacking. First, for every probability measure
(β, ν) on P (X), there exist a function γ : R → X in MX

and a measurable k : R→ G(R) such that β(r) = [γ, k(r)]
for all r ∈ R. Second, conversely, for a function γ ∈ MX ,
a measurable k : R → G(R), and a probability measure
ν ∈ G(R), the function (λr. [γ, k(r)], ν) is a probability

measure in P (P (X)). Thus, we can look for (γ, k, ν) in
the conclusion of the theorem instead of (β, ν).

The second is the definition of [β, ν] >>= iidn. Using
(γ, k, ν) instead of (β, ν), we find that [β, ν] >>= iidn is
[(
∏n
i=1 γ) ◦ ιn, (ι-1n )∗ (ν >>= λr.

⊗n
i=1 k(r))].

Recall that two measures p and q on the product
space (Xn,

⊗n
i=1X) are equivalent when p(U1× · · ·×Un)

equals q(U1 × · · · × Un) for all U1, . . . , Un ∈ ΣMX
. Thus

we must show that ((−)1...n ◦ α)∗µ)(U1 × . . . × Un) is(
(
∏n
i=1 γ)∗ (ν >>= λr.

⊗n
i=1 k(r))

)
(U1 × . . . × Un). This

equation is equivalent to the one in the statement of the
lemma with ξ = ν.

Thus we just need to show how to construct ξ, k and γ in
Lemma 29 from a given exchangeable probability measure
(α, µ) on Xω. Constructing ξ and γ is easy:

ξ
def= µ, γ

def= λr. α(r)1.

Note that these definitions type-check: ξ = µ ∈ G(R), and
γ ∈ MX because α ∈ MXω and the first projection (−)1
is a morphism Xω → X.

Constructing k is not that easy. We need to use the
fact that µ is defined over R, a standard Borel space. This
fact itself holds because all probability measures on quasi-
Borel spaces use R as their source of randomness. Define
measurable functions αe, αo : (R,ΣR)→ (Xω,ΣMXω ) by

αe(r)i
def= α(r)2i (even), αo(r)i

def= α(r)2i−1 (odd).

Since µ is a probability measure on R, there exists a
measurable function k′ : (Xω,ΣMXω ) → (G(R),ΣG(R)),
called a conditional probability kernel, such that for all
measurable f : R→ R and U ∈ (αe)-1(ΣMXω ),∫

r∈U
f(r) dµ =

∫
r∈U

(∫
R
f d((k′ ◦ αe)(r))

)
dµ. (7)

Define k def= k′ ◦ αe.
Our ξ, k and γ satisfy the requirement in Lemma 29

because of the following three properties, which follow
from exchangeability of (α, µ).

Lemma 30. For all n ≥ 1 and all U1, . . . , Un ∈ ΣMX
,∫

r∈R

(
n∏
i=1

[α(r)i ∈ Ui]
)

dµ =
∫
r∈R

(
n∏
i=1

[αo(r)i ∈ Ui]
)

dµ.

Proof. Consider n ≥ 1 and U1, . . . , Un ∈ ΣMX
. Pick a

permutation π on positive integers such that π(i) = 2i−1
for all integers 1 ≤ i ≤ n. Then, [α, µ] = [απ, µ] by the
exchangeability of (α, µ). Thus∫
r∈R

(
n∏
i=1

[α(r)i ∈ Ui]
)

dµ =
∫
r∈R

(
n∏
i=1

[απ(r)i ∈ Ui]
)

dµ,

from which the statement follows.

Lemma 31. For all U ∈ ΣMX
and all i, j ≥ 1,∫

s∈R
[αo(s)i ∈ U ] d(k(r)) =

∫
s∈R

[αo(s)j ∈ U ] d(k(r))



holds for µ-almost all r ∈ R.

Proof. Consider a measurable set U ∈ ΣMX
and i, j ≥ 1.

The function λr.
∫
s∈R [αo(s)i ∈ U ] d(k(r)) : R→ R is

a conditional expectation of the indicator function
λs. [αo(s)i ∈ U ] with respect to the probability measure
µ and the σ-algebra generated by the measurable func-
tion αe : R → (Xω,ΣMXω ). By the almost-sure unique-
ness of conditional expectation, it suffices to show that
λr.

∫
s∈R [αo(s)j ∈ U ] d(k(r)) is also a conditional expecta-

tion of λs. [αo(s)i ∈ U ] with respect to µ and αe. Pick a
measurable subset V ∈ ΣMXω . Then:∫

r∈R
[αe(r) ∈ V ] ·

(∫
s∈R

[αo(s)j ∈ U ] d(k(r))
)

dµ

=
∫
r∈R

[αo(r)j ∈ U ∧ αe(r) ∈ V ] dµ

=
∫
r∈R

[αo(r)i ∈ U ∧ αe(r) ∈ V ] dµ.

The first equation holds because the function
λr.

∫
s∈R [αo(s)j ∈ U ] d(k(r)) is a conditional expectation

of λs. [αo(s)j ∈ U ] with respect to µ and αe. The second
equation follows from the exchangeability of (α, µ). We
have just shown that λr.

∫
s∈R [αo(s)j ∈ U ] d(k(r)) is a

conditional expectation of λs. [αo(s)i ∈ U ] with respect
to µ and αe.

Lemma 32. For all n ≥ 1 and all U1, . . . , Un ∈ ΣMX
,∫

s∈R

(
n∏
i=1

[αo(s)i ∈ Ui]
)

d(k(r))

=
n∏
i=1

∫
s∈R

[αo(s)i ∈ Ui] d(k(r))

holds for µ-almost all r ∈ R.

Proof notes. The complete proof appears in the full ver-
sion of this paper. Our proof is by induction on n ≥ 1.
There is nothing to prove for the base case n = 1. To han-
dle the inductive case, assume that n > 1. Let U1, . . . , Un
be subsets in ΣMX

. Define a function α′ : R → Xω as
follows:

α′(r)i =
{
αo(r)i if 1 ≤ i ≤ n− 1
αe(r)i−n+1 otherwise.

Then, α′ is in MXω , so that α′ is a measurable function
(R,ΣR) → (Xω,ΣMXω ). Thus, there exists a measur-
able k′0 : (Xω,ΣMXω ) → (G(R),ΣG(R)), the conditional
probability kernel, such that for all measurable functions
f : R → R, the function λr.

∫
R f d((k′0 ◦ α′)(r)) is a

conditional expectation of f with respect to µ and the
σ-algebra generated by α′. Define k′ : R→ G(R) = k′0 ◦α′.
Then, k′ is measurable because so are k′0 and α′. More
importantly, for µ-almost all r ∈ R,∫
s∈R

[αo(s)n ∈ Un] d(k(r)) =
∫
s∈R

[αo(s)n ∈ Un] d(k′(r)).
(8)

The proof of this equality appears in the full version of
this paper.

Recall that k = k0 ◦ αe and k′ = k′0 ◦ α′ are defined
in terms of conditional expectation. Thus, they inherit all
the properties of conditional expectation. In particular, for
µ-almost all r ∈ R and all measurable h : R→ R,∫

s∈R

n∏
i=1

[αo(s)i ∈ Ui] d(k(r))

=
∫
s∈R

(∫
t∈R

n∏
i=1

[αo(t)i ∈ Ui] d(k′(s))
)

d(k(r)),
(9)

∫
s∈R

n∏
i=1

[αo(s)i ∈ Ui] d(k′(r))

=
n−1∏
i=1

[αo(r)i ∈ Ui] ·
∫
s∈R

[αo(s)n ∈ Un] d(k′(r)),
(10)

∫
s∈R

(
h(s) ·

∫
t∈R

[αo(t)n ∈ Un] d(k(s))
)

d(k(r))

=
(∫

t∈R
[αo(t)n ∈ Un] d(k(r))

)
·
(∫

s∈R
h(s) d(k(r))

)
.

(11)

Using the assumption (8) and the properties (9), (10) and
(11), we complete the proof of the inductive case as follows:
for all subsets V ∈ (αe)-1(ΣMXω ),∫

r∈V

∫
s∈R

n∏
i=1

[αo(s)i ∈ Ui] d(k(r)) dµ

=
∫
r∈V

∫
s∈R

∫
t∈R

n∏
i=1

[αo(t)i ∈ Ui] d(k′(s)) d(k(r)) dµ

=
∫
r∈V

∫
s∈R

n−1∏
i=1

[αo(s)i ∈ Ui]

·
∫
t∈R

[αo(t)n ∈ Un] d(k′(s)) d(k(r)) dµ

=
∫
r∈V

∫
s∈R

n−1∏
i=1

[αo(s)i ∈ Ui]

·
∫
t∈R

[αo(t)n ∈ Un] d(k(s)) d(k(r)) dµ

=
∫
r∈V

(∫
t∈R

[αo(t)n ∈ Un] d(k(r))
)

·

(∫
s∈R

n−1∏
i=1

[αo(s)i ∈ Ui] d(k(r))
)

dµ

=
∫
r∈V

n∏
i=1

∫
s∈R

[αo(s)i ∈ Ui] d(k(r)) dµ.

The first and the second equalities hold because
of (9) and (10). The third equality uses (8), and
the fourth the equality in (11). The fifth follows
from the induction hypothesis. Our derivation im-
plies that both λr.

∫
s∈R

∏n
i=1 [αo(s)i ∈ Ui] d(k(r)) and



λr.
∏n
i=1
∫
s∈R [αo(s)i ∈ Ui] d(k(r)) are conditional expec-

tations of the same function with respect to µ and the same
σ-algebra. So, they are equal for µ-almost all inputs r.

The following calculation combines these lemmas and
shows that ξ, k and γ satisfy the requirement in Lemma 29:∫
r∈R

n∏
i=1

[α(r)i ∈ Ui] dµ

=
∫
r∈R

n∏
i=1

[αo(r)i ∈ Ui] dµ Lem. 30

=
∫
r∈R

(∫
s∈R

n∏
i=1

[αo(s)i ∈ Ui] d(k(r))
)

dµ Eq. (7)

=
∫
r∈R

n∏
i=1

(∫
s∈R

[αo(s)i ∈ Ui] d(k(r))
)

dµ Lem. 32

=
∫
r∈R

n∏
i=1

(∫
s∈R

[αo(s)1 ∈ Ui] d(k(r))
)

dµ Lem. 31

=
∫
r∈R

n∏
i=1

(∫
s∈R

[γ(s) ∈ Ui] d(k(r))
)

dξ Def. of γ, ξ.

This concludes our proof outline for Theorem 28.

IX. Related work
A. Quasi-topological spaces and categories of functors

Our development of a cartesian closed category from
measurable spaces mirrors the development of cartesian
closed categories of topological spaces over the years.

For example, quasi-Borel spaces are reminiscent of sub-
sequential spaces [20]: a set X together with a collection of
functions Q ⊆ [N ∪ {∞} → X] satisfying some conditions.
The functions in Q are thought of as convergent sequences.
Another notion of generalized topological space is C-
space [38]: a setX together with a collectionQ ⊆ [2N → X]
of ‘probes’ satisfying some conditions; this is a variation
on Spanier’s early notion of quasi-topological space [33].
Another reminiscent notion in the context of differential
geometry is a diffeological space [3]: a set X together with
a set QU ⊆ [U → X] of ‘plots’ for each open subset U
of Rn satisfying some conditions. These examples all form
cartesian closed categories.

A common pattern is that these spaces can be under-
stood as extensional (concrete) sheaves on an established
category of spaces. Let SMeas be the category of standard
Borel spaces and measurable functions. There is a functor
J : QBS→ [SMeasop,Set] with

(
J(X,MX))(Y,ΣY

) def=
QBS

(
(Y,MΣY

), (X,MX)
)
, which is full and faithful by

Prop. 14(2). We can characterize those functors that arise
in this way.

Proposition 33. Let F : SMeasop → Set be a functor.
The following are equivalent:
• F is naturally isomorphic to J(X,MX), for some

quasi-Borel space (X,MX);

• F preserves countable products and F is extensional:
the functions i(X,ΣX) : F (X,ΣX)→ Set(X,F (1)) are
injective, where (i(X,ΣX)(ξ))(x) = (F (pxq))(ξ), and
we consider x ∈ X as a function pxq : 1→ X.

There are similar characterizations of subsequential
spaces [20], quasi-topological spaces [10] and diffeological
spaces [3]. Prop. 33 is an instance of a general pattern
(e.g. [3], [10]); but that is not to say that the definition
of quasi-Borel space (Def. 7) arises automatically. The
method of extensional presheaves also arises in other
models of computation such as finiteness spaces [11] and
realizability models [30]. This work appears to be the first
application to probability theory, although via Prop. 33
there are connections to Simpson’s ‘random topos’ [32].

The characterization of Prop. 33 gives a canonical
categorical status to quasi-Borel spaces. It also connects
with our earlier work [34], which used the cartesian
closed category of countable-product-preserving functors
in [SMeasop,Set]. Quasi-Borel spaces have several ad-
vantages over this functor category. For one thing, they
are more concrete, leading to better intuitions for their
constructions. For example, measures in [34] are built
abstractly from left Kan extensions, whereas for quasi-
Borel spaces they have a straightforward concrete defi-
nition (Def. 10). For another thing, in contrast to the
functor category in [34], quasi-Borel spaces form a well-
pointed category: if two morphisms (X,MX) → (Y,MY )
are different then they disagree on some point in X. From
the perspective of semantics of programming languages,
where terms in context Γ ` t : A are interpreted as
morphisms JtK : JΓK → JAK, well-pointedness is a crucial
property. It says that if two open terms are different, JtK 6=
JuK : JΓK→ JAK, then there is a ground context C : 1→ JΓK
that distinguishes them: JC[t]K 6= JC[u]K : 1→ JAK.

Quasi-Borel spaces add objects to make the category
of measurable spaces cartesian closed. Another interesting
future direction is to add morphisms to make more objects
isomorphic, and so find a cartesian closed subcategory [35].

B. Domains and valuations
In this paper our starting point has been the standard

foundation for probability theory, based on σ-algebras
and probability measures. An alternative foundation for
probability is based on topologies and valuations. An
advantage of our starting point is that we can reference the
canon of work on probability theory. Having said this, an
advantage to the approach based on valuations is that it is
related to domain theoretic methods, which have already
been used to give semantics to programming languages.

Jones and Plotkin [21] showed that valuations form a
monad which is analogous to our probability monad. How-
ever, there is considerable debate about which cartesian
closed category this monad should be based on (e.g. [22],
[18]). For a discussion of the concerns in the context of
programming languages, see e.g. [13]. One recent proposal



is to use Girard’s probabilistic coherence spaces [12]. An-
other is to use a topological domain theory as a cartesian
closed category for analysis and probability ([5], [27]).

Concerns about probabilistic powerdomains have led
instead to domains of random variables (e.g. [17], [25],
[4], [31]). We cannot yet connect formally with this work,
but there are many intuitive links. For example, our
measures on quasi-Borel spaces (Def. 10) are reminiscent
of continuous random variables on a dcpo ([17, III.1]).

An additional advantage of a domain theoretic approach
is that it naturally supports recursion. We are currently
investigating a notion of ‘ordered quasi-Borel space’, by
enriching Prop. 33 over dcpo’s.

C. Other related work
Our work is related to two recent semantic stud-

ies on probabilistic programming languages. The first
is Borgström et al.’s operational (not denotational as
in this paper) semantics for a higher-order probabilistic
programming language with continuous distributions [6],
which has been used to justify a basic inference algorithm
for the language. Recently, Culpepper and Cobb refined
this operational approach using logical relations [7]. The
second study is Freer and Roy’s results on a computable
variant of de Finetti’s theorem and its implication on
exchangeable random processes implemented in higher-
order probabilistic programming languages [14]. One inter-
esting future direction is to revisit the results about logical
relations and computability in these studies with quasi-
Borel spaces, and to see whether they can be extended to
spaces other than standard Borel spaces.

X. Conclusion
We have shown that quasi-Borel spaces (§III) support

higher-order functions (§IV) as well as spaces of probabil-
ity measures (§V). We have illustrated the power of this
new formalism by giving a semantic analysis of Bayesian
regression (§VI), by rephrasing the randomization lemma
as a quotient-space construction (§VII), and by showing
that it supports de Finetti’s theorem (§VIII).
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[5] I. Battenfeld, M. Schröder, and A. Simpson, “A convenient
category of domains,” ser. ENTCS, vol. 172, 2007.

[6] J. Borgström, U. Dal Lago, A. D. Gordon, and M. Szymczak,
“A lambda-calculus foundation for universal probabilistic pro-
gramming,” in Proc. ICFP, 2016, pp. 33–46.

[7] R. Culpepper and A. Cobb, “Contextual equivalence for prob-
abilistic programs with continuous random variables and scor-
ing,” in Proc. ESOP, 2017.
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