On the Statistical Thermodynamics of
Reversible Communicating Processes

Giorgio Bacci', Vincent Danos?*, and Ohad Kammar?

1 DiMI, University of Udine
2 LFCS, School of Informatics, University of Edinburgh

Abstract. We propose a probabilistic interpretation of a class of re-
versible communicating processes. The rate of forward and backward
computing steps, instead of being given explicitly, is derived from a set
of formal energy parameters. This is similar to the Metropolis-Hastings
algorithm. We find a lower bound on energy costs which guarantees that
a process converges to a probabilistic equilibrium state (a grand canon-
ical ensemble in statistical physics terms [19]). This implies that such
processes hit a success state in finite average time, if there is one.

1 Introduction

Regardless of the task a distributed algorithm is trying to complete, it has to
deal with the generic problem of escaping deadlocks. One can solve this problem
in a general fashion for CCS, w-calculus, and similar message-passing models of
concurrency by equipping communicating processes with local memories. The
role of memories is to record what local information will allow processes to
backtrack, if needed. Backtracking preserves the granularity of distribution and
can be seen as a special kind of communication [1,2,8]. A somewhat similar idea,
based on resets rather than memories, can be found in early work from K.V.S.
Prasad [17], and more recently in the context of higher-order m-calculus [11].

Following this approach, it is enough for the programmer to design a pro-
cess that may succeed according to its natural forward semantics, and the same
process, wrapped in a reversible operational semantics, must succeed. Separat-
ing the concern of deadlocks from the fundamentally different one of advancing
locally towards a distributed consensus - makes the code simpler to understand
and amenable to efficient automated verification [3,9]. What this method does
not do, however, is to generate efficient code - that the code must eventually
succeed does not say anything about the time it will take to do so. In fact, the
general framework of non-deterministic transition systems is ill-equipped to even
discuss the issue, as the worst time of arrival will often be infinite.

In the following, we provide a reinterpretation of our earlier construction of a
reversible CCS in probabilistic terms. This sets the question in a well-understood
quantitative framework. In particular, we can define a notion of exhaustive search

* Corresponding author: vdanos@inf.ed.ac.uk

for our distributed reversible processes, namely that the search reaches a prob-
abilistic equilibrium. Better, we can show that under suitable constraints on the
parameters arbitraging between forward and backward moves, a process will
reach such an equilibrium. In other words, when such constraints are met, a par-
ticular event that may happen in a basic forward process, not only must happen
in its reversible form, but must do so in finite average time. Obviously, this is a
stronger guarantee.

1.1 Energy landscaping

To achieve this, we build an energy function, or simply a potential, on the state
space of a reversible process. This potential generates convergent search be-
haviours, on the transition graph that the process generates. The actual grammar
of processes that we use slightly generalizes CCS [14] in that synchronizations
can be many-way (more than two processes can synchronize together; eg, as in
Petri nets), and can also be non-exclusive (a channel can be used to synchronize
with many others, possibly at different rates; eg, as in Kwiatkowski-Stark’s con-
tinuous 7-calculus [10]). Most importantly, the potential we zero in on constrains
the continuous-time Markov chain semantics without altering the granularity of
distribution.

Not any potential works, and some energy policies will be too liberal and
allow some processes to undergo an explosive growth which never reaches an
equilibrium (despite reversibility). Our key finding is that, in order to obtain the
existence of a general equilibrium, processes must have a probability to fork that
decreases exponentially as a function of the size of their local memory. We prove
that any rate of decrease larger than a?3log(4(8 + 1)), where « is the maximal
number of processes that can synchronize at once, and 8 the maximal number
of successive forks that a process can undergo before communicating again, is
sufficient.

This lower bound is reasonably sharp.

1.2 Related work

Beyond the technical result, this paper borrows from a fundamental physical
intuition, that of driving and deriving the dynamics by shaping the limit proba-
bility distribution it should converge to. A stochastic semantics is simpler in this
respect, but the idea can be adapted to deterministic semantics as well. This is,
in essence, the celebrated Metropolis algorithm which rules supreme in search
and sample problems [13,7]: one first describes the energetic landscape of the
state space, equivalently the probabilistic equilibrium, and then one defines the
probabilistic transitions used to travel this landscape. Transition probabilities
are chosen in a way that guarantees that the dynamics converge to the said
equilibrium (this is explained in more details in §2).

Our work also borrows from Ref. [1], where the question of the existence of
an equilibrium for a recursive Markov chain is proved to be undecidable. The
proof uses a sequential reduction of an archetypical search problem, namely the

Post correspondence problem, into the equilibrium existence problem. To obtain
an equilibrium, even in the absence of a solution to the underlying Post problem
instance, one introduces an energy penalty on searches. The class of potential
that we use in the present paper is a distributed version of the former (although,
here, we only deal with finding a potential that converges, as opposed to checking
whether a given dynamics admits of one).

Note that the simple syntax of reversible CCS is merely used here for the
sake of a simple reduction of the idea to practice. As for our earlier work on the
qualitative aspects of reversible CCS, other syntaxes could do just as well.

Finally, and despite its concurrent-theoretic nature, the present work also
draws inspirations from practical applications. In a modeling context, Ollivier’s
et al. recent paper [16] proposes a method to design models of biomolecular
networks of allosteric interactions that is entirely based on the systematic usage
of a certain grammar of local potentials. Among other things, this guarantees
the thermodynamic consistency of the models. This has been a major source
of inspiration for this work, as for the earlier Ref [5] where we prove that the
thermodynamic consistency of mass action Petri nets is decidable (and find a
definite shape for the associated potentials).

1.3 Outline

The paper is organised as follows. The next section (§2) is a reminder of the ba-
sics of discrete-space/continuous-time Markov chains, and the (in the context of
this paper) central notion of equilibrium - in essence, a special kind of fixed point
for the action of the Markov chain. Next, in §3, we turn to the (slightly general-
ized) syntax of reversible CCS and discuss the important property of simplicity
which the transition graph underlying a reversible process enjoys. Roughly, this
means that the transition graph of a reversibilized process is acyclic because it
incorporates its own history, and this has consequences on the construction of
equilibria. As in both cases, we are dealing here with simple or well-understood
objects, §2-3 will be a bit concise, but still, hopefully, reasonably self-contained.

In §4, we introduce and compare different candidate potentials which one
could think of using to lansdcape the reversible CCS state space. The §5 inves-
tigates an example of explosive growth which shows that no equilibrium can be
obtained if energy penalties are purely based on the number of synchronizations
of processes; this prepares the ground for a general approach. Finally, in §6,
which is the technical core of the paper, we obtain our convergence result, which
gives sufficient lower bounds on energy costs for communication to ensure the
existence of a probabilistic equilibrium. The main technicality has to do with
finding lower bounds for the potential of a process as a function of its number of
synchronizations (Lemma 4). The conclusion returns to some of the issues dis-
cussed above, and touches on likely future research and intersections with more
traditional concurrent-theoretic work on rewriting and termination.

2 Probabilistic reminders

Throughout the paper we write log(x) for the natural logarithm; we manipulate
multisets as vectors, that is to say additively, and write |a| for the size of a
multiset (equivalently its Li-norm); eg a = a + 2b, and |a| = 3.

We start with a quick reminder on CTMCs.

2.1 Timers and chains

A random exponential time of parameter A > 0 is an [0, +00)-valued random
variable T such that p(T > t) = exp(—At). Thus, the density of T is A exp(—At),
for t > 0; and T’s mean is f0+00 Aexp(—At)tdt = \7L.

Suppose given a set X which is at most countably infinite, and a rate function
q(z,y) € RT, for z, y in X, and z # y.

The transition graph or the support of ¢, written |g|, is the binary relation,
or the directed graph, on X which contains (z,y) iff ¢(z,y) > 0.

We suppose |¢| has finite out-degree (this also called being image-finite).

We can define a continuous-time Markov chain over X in the following way.
When the chain is at « in X, for each of the finitely many ys such that ¢(z,y) > 0,
draw a random exponential time 7(z,y) with parameter ¢(z, y); advance time by
7 = min7(z,y), and jump to the (almost surely) unique y such that 7(z,y) = 7.

The idea is that all possible next states compete, and the higher the rate of
q(z,y), the more likely it is that y will be the next state. It is easy to calculate
that the probability to jump to y is actually ¢(z,y)/ >, ¢(,2); and that for
small ts, the probability to jump to x within ¢ is equivalent to ¢(z,y)t, hence
one can think of ¢(z,y) as the rate at which one jumps from z to y.

Note that for the above definition to make sense it is important to suppose
as we have done that |g| is image-finite. We will also suppose thereafter that |g|
is symmetric (not to be confused with the much stronger assumption that ¢ is
a symmetric function, ie ¢(z,y) = q(y,x)), and define p(z,y) = q(y,z)/q(z,y)
when either (equivalently both) of ¢(z,y) and ¢(y,x) are > 0.

2.2 Equilibrium

Now, on to the definition of an equilibrium that will be our central concern here.

Consider a function p defined on X and with values in R*. One says p is an
equilibrium for ¢ if p is not everywhere zero, and:

- |detailed balance] for all (x,y) € |q|, p(z)q(x,y) = q(y, z)p(y)
- [convergence] Z =" p(z) < 400

If such a p exists, we can obtain a probability on X by normalizing p as p/Z.
Naturally, if X is finite the second condition always holds.

The detailed balance condition implies that p, construed as a probabilistic
state of the system, is a fixed point of the action of the chain ¢, and as |qg| is
symmetric, regardless of the initial state, the chain will converge to p (see Ref. [5,
§2] for more details, or for a comprehensive textbook explanation, see Ref. [15]).

2.3 Potentials

Suppose given a real-valued function V' on X (the energy landscape or the po-
tential), together with a symmetric graph G on X (the moves one can make to
travel the landscape). One can always define a rate function ¢(z,y) over G for
which py (z) = exp(—=V(x))/Z is an equilibrium, when X is finite.

For instance, set g(z,y) = 1 if V(x) > V(y) (one is always willing to travel
downhill), ¢(z,y) = exp(V(x) =V (y)) else (one is increasingly reluctant to travel
uphill).

We can readily see that, with these settings, we have detailed balance:

pv (@) /pv(y) = "WV = g(y,2) /q(z,y) (1)

When X is finite, this is enough to define an equilibrium, and this particu-
lar choice of a rate function ¢ together with the choice of G is the Metropolis
algorithm. In the case which interests us, when X can be countably infinite, the
idea still applies, but one has to make sure that the potential V' defines a finite
Zy =3y exp(=V(z)).

The converse problem of, given ¢, finding a potential for g, is also interest-
ing. In general, we can pick an origin z(arbitrarily and within the connected
component of zg in |g|, define the potential V as:

V()= Y logp(z,y) (2)

(z,y)€y

for some path ~ leading from zg to x.

Such an assignment is correct, meaning that detailed balance holds for the
pair (g, V), iff the assignment does not depend on the choice of 7. In this case,
V' is defined uniquely on zy’s component up to an additive constant. If there is
a dependency, then there is no solution, ie the dynamics on xy’s component is
not describable by a potential. One says then that the chain is dissipative. Even
for simple CTMCs this property is undecidable [4].

If the transition graph |g| is acyclic, seen as an undirected graph, there is only
one choice for v (up to trivial backtracks - which the formula above is always
happy with as log p(z,y) = —log p(y, z)), so independence trivially holds.

In the next section, X will be the state space of some reversible communicat-
ing process pg. Reversibility will be obtained by equipping threads with memories
which collectively capture the history of the computation (up to causal equiv-
alence of computation paths, as we will see). Hence, the set of states reachable
from the initial state pg is nearly equivalent to the space of its computations,
and in particular, the underlying transition graph is (nearly) acyclic. This means
that detailed balance will be for free, and only convergence will be an issue.

We mention in passing that in the case of stochastic mass action Petri nets, we
find the opposite situation. Namely, verifying detailed balance might be involved
as one needs to compute reactions invariants (the Petri net “loops”), whereas
the convergence automatically follows [5].

3 Qualitative semantics

We start with a reminder of CCS and its reversible form. In this minimalis-
tic model, communication is devoid of any content, that is to say no value or
name changes hands in a communication event; hence we will talk rather about
synchronizations (synchs for short).

We assume a countable set of channels A, and a finite set of synchronizable
(non-empty) multisets of channels A*.

A process p can be a product pi,...,pn, or a guarded sum a1py + ...+ anPn
with coefficients a; € A.

Products and sums are considered associative and commutative.

When p = (p1,...,pn), p forks into the siblings p;s which then run in parallel.
When p = (a1p1 + ... + anpn), p waits for an opportunity to synch on any of
the channels a; with a set of processes willing to synchronize on a tuple a such
that a + a € A*. When that happens, p runs p;.

Recursive definitions are allowed only if guarded, meaning that a recursively
defined process variable only appears prefixed (aka guarded) by a channel; such
definitions are considered to unfold silently.

As the reader may have noticed, to enhance readability (as we need to com-
pute some examples in §4-5) we use lightfooted notations. Specifically, we use
the comma to denote the product, and juxtaposition for prefixing.

An example of process (which we analyze from close in §5) is pg = p, p’, with
p = a(p,p), p = d(p/,p'). Assuming a + o’ € A*, the two top threads p, p’
can synchronize, after what they will fork into two copies of themselves, which
can synchronize too, etc. Clearly py has countably many computation traces,
therefore we do need to deal with countable state spaces.

3.1 Memories and Transitions

Reversibility is obtained by adjoining memory stacks to processes in order to
record transitions. One pushes a sibling identifier on the memory, when forking,
and information about the synch partners, when synching.

Thus we have fork transitions (with n > 0):

F'(pl""vpn)_>fF1'p17~-~7F”'pn

where the memory I is copied over to each sibling, with a unique integer iden-
tifier for each one of them.
And we also have synch transitions (with m > 0):

Fl'(alpl +q1)a-~-aFm'(ampm+Qm) %Z
Fl(rualaql)'plw"aFm(Fvamv(Im)'pm

where I is short for I'iaq, ..., I,ay,. This means that each of the threads taking
part in the synch records the memory and channel of all participants, its own
channel a;, and its sum remainder ¢; (preempted by the synch).

We have labelled the transition arrows for convenience, where —7 means
synch on a multiset a € A*. Naturally, the above transitions can happen in any
product context.

(NB: Memories are reversed in this notation compared to Ref. [1].)

Communicating processes commonly offer additional constructs: name cre-
ation, restrictions, value- or name-passing, etc, which are not considered here.
None should make a difference to our main argument, but this has to be verified.

Consider a process with an empty memory & - pg, and define p € £2(po) if p is
reachable from @ - pg by a sequence of transitions, also known as a computation
trace, as defined above. It is easy to see that within any p € £2(po), memories
uniquely identify their respective processes. Thus, both types of transitions store
enough information to be reversed unambiguously. In particular, adding the
symmetric backward transitions leaves §2(pg) unchanged.

Hereafter, we will suppose that transitions are effectively symmetric.

3.2 Near acyclicity and Simplicity

Now that we have our symmetric transition graph in place, we can return to the
acyclicity property that we alluded to in §2.

Consider a computation trace v, taking place in some 2(pg). If in v we find
a forward move followed immediately by its symmetric backward move, then we
can cancel both and obtain a new (shorter) trace ' with the same end points.
Likewise, if in v we find two synch moves in immediate succession which are
triggered by entirely disjoint set of threads (one says the synchs are concurrent),
then we can commute the two steps and obtain a new trace 7' (of equal length)
with the same end points.

This defines a notion of causal equivalence on traces with common end points.
We know from Ref. [1] that any two computation traces +, v with the same end
points are causally equivalent. We will refer to this as the labeling property.
(The name is chosen in relation to Lévy’s labeling for A-calculus [12]; indeed,
forward reversible CCS is a Lévy-labeling of CCS.) Essentially, this means that
the transition graph on {2(pg) is nearly acyclic.

The labeling property implies a convenient property of simplicity, namely
that, for p, p’ in £2(po), there is at most one transition from p to p’.

3.3 An aside on degenerate sums

Actually, for the labeling and simplicity properties to be strictly true, one needs
to be precise in the management of degeneracy in sums (as noticed in Ref. [8]).
Consider a simple binary synch, with a = a + o’ € A*:

x:=T-ap+nr,I"-ap +r" =5 Ta,L,r) p, I, L) p =y

Suppose ap and a'p’ occur with multiplicities p(ap), p(a’p’), then there are
w(ap)p(a’p’) distinct ways to jump from z to y.

To handle this additional cyclicity/lack of simplicity in the transition graph,
one can forbid p + p in sums altogether; or one can recover simplicity by mem-
orising the particular term in the sum that was used (which introduces non-
commutative sums that are a bit awkward); or simply incorporate such parallel
edges in the causal equivalence - and handle the induced local symmetry factor
in the quantitative part of the development (next section and onwards). The
latter solution seems preferable, as it is more general.

Then, anticipating somewhat on the next section, the compound rate ratio
p(x,y) for the above parallel jumps on a + a' is:

k; 1 1

a

PLoY) =G puap) pla

3)

where k7, k7 are the forward and backward rates for a synch on a (which can
depend on z and y in general).

The multiplicity factors appearing above are perfectly manageable, but they
do make the treatment a little less smooth. Henceforth, we will assume such
degeneracies do not happen, and simplicity holds as is.

3.4 'Which potential to look for?

Returning to the main thrust, we are now looking for a quantitative version of
the above calculus.

As the labeling property guarantees near-acyclicity of the underlying sym-
metrized transition graph, we know from §2 that any rate function ¢ will lead to
a potential V' definable as in (2), provided that it respects the causal equivalence,
ie the little cyclicity left in reversible CCS.

By which we mean, specifically, that the ratios p should verify: 1) p(z, y)p(y, 2)
p(x,y)p(y’, z) when y, y' are intermediate forms obtained by interleaving concur-
rent synchs in either order, and 2) should be equal when coming from degenerate
sums as above. There is no need to say anything for trivial forward/backward
loops, as by definition p(z,y) = p(y,x) L.

The fact that (almost) any rate assignment works notwithstanding, we would
like to derive the rates from some potential, for reasons explained in the intro-
duction. This raises the question of what a good potential is. Two requirements
stand out. Firstly, the potential should be such that the implied dynamics is
implementable concurrently and does not require any global knowledge of the
state of the system. Secondly, it should converge. Besides, one might also want
a potential that is invariant under natural syntactic isomorphisms (eg the num-
bering of siblings), and such that disjoint sums of processes implies independent
dynamics.

The solution we will eventually home in on, ticks all of the above boxes (but
we are not going to be sure until §6).

4 Concurrent potentials

We examine now two potentials that seem natural in the light of the discussion
right above, and establish that they are implementable concurrently (within the
abstract model of concurrency on which CCS relies, that is). Convergence issues
are investigated in the next two sections.

Throughout this section we fix an initial process @ - pg, and a real-valued
energy vector indexed over A*, and written e.

4.1 Total stack size potential

The first potential we consider is defined inductively on the syntax of a reversible
process in £2(pg):

Vi(p1, - 5pn) = Vipr) + ... + Vi(pn)
Vl(r(raan)) = Vl(F) + €a

with I' = I'taq, ..., ey and a = ay + ... + ap,.

Equivalently, Vi (p) is the inner product (€, I'(p)), where I'(p)(a) is the num-
ber of occurrences of a in p; f(p) can be seen as a forgetful and commutative
projection of the memory structure of p.

Note that V1(@ - pg) = 0 with this definition; one can always choose a zero
energy point in the (strongly) connected component of the initial state, and it
is natural to choose the initial state itself.

For each of the two types of transitions, we can easily compute the energy
balance:

AVy = (n—1)Vi(I') n-ary fork with memory I’
AV] = meq synch on a

Now, we need to understand how these constrain the rate function. This is
analogous to what we have done earlier with (1) in §2.3.

Let us write k k’}' for backward and forward forking rates, and k, k} for
backward and forward synching rates. For a fork, and by the simplicity property,
the CF)nst-raint translates into log p(z, y) = 1og(k]?/k:}') = (n—1)Vi(I"). A possible
solution is:

ky =1
]g? = e~ (n=D)Vi(I)
This is an entirely local solution, as the increasing reluctance to fork only depends
on the local memory of the process of interest (and the number of siblings,
but that can be statically controlled). Similarly, for a synch, the constraint is
log p(x,y) = log(k, /kT) = meq. A possible solution is:
kg =1

+ — ,—Meéq
ki =e ¢

not only this is local, but in contrast with the fork case, the assignment does
not depend on the memories of the synching processes.
Note that there are many other solutions compatible with V.

4.2 Total synch potential

Perhaps the most natural potential is the following.
Given a path « from @ - pg to p:

Vo(p) = X acar Zxagyew(_l)v(s)ea

where v(s) = £1 depending on whether the synch is forward or backward. This
Vb is based on the idea that only communication costs, and forking is done at
constant potential. As for Vi, V(& - pg) = 0.

Clearly, this definition is independent of the choice of . Indeed, by the label-
ing property, any -, 7/ linking @ - pg to p are convertible by swaps of concurrent
synchs, and trivial cancellations, both of which leave Vj invariant. The corre-
sponding constraints can be met by a locally implementable rate function, eg,
ki = k‘}', and k, /k} = exp(eq). (We could add a term to V to count the forks
as well.)

Differently from Vi, there is no straightforward inductive formula for V;(p),
as to compute it one essentially needs to replay a reduction to p.

4.3 V1 VS. VO

Let us compare the potentials on two simple examples. Below, we suppose a =
a+a,b=>b+1b in A*, and ¢, > 0; we do not represent the entirety of the
memory elements, just what we need to compute the Vs.

Here is a first example:

@ -a(a,b,a’,b),d — 0a-(a,b,a,b),1a - _
— 0a0-a,0al -b,0a2-a’,0a3 -V, 1a - _
— 0ala - _,0alb- _,0a2a - _,0a3b-_,la-_=p

and we get:
Vo(p) = 2€a + €p < Tea + €5 = Vi(p)
We can use the expansion law, replacing a,b with ab + ba, and similarly for
a’, b’ in py, and get a variant of the above trace:

@ - alab+ba,ad’t +b'a'),a’ — 0a- (ab+ ba,a'b +b'a’),1la - _
— 0a0 - (ab+ ba),0al - (a'V +V'a'),1a - -
— 0alab - _,0vlab- _,la-_=7p

with:

Vo(p) = Vo(p') = 2¢a + €p < dea + 265 = Vi(p') < Vi(p)
We see that V7, unlike Vj, is truly concurrent in the sense that it is sensitive to
sequential expansions. In fact, according to Vi, an expanded form using a sum is
cheaper by an amount of V;(I'); a sequentialized version is bolder in its search
(and the backward options are fewer).

In general, V;; < V7, as a synch performed on the way to p is visible at least
once in a memory in p (in fact, at least |a| for a synch on a); and Vy(p) = Vi(p)
if p has only forks with n < 1.

So which potential should one prefer? Both seem equally good, but the next
section will tell a very different story.

10

5 Explosive growth

Any potential V partitions £2(pg) into its level sets £2,(po). That is to say, 2, (po),
sometimes simply written (2, is the (finite) set of ps reachable from & - py, and
such that V(p) = v.

Among other things, to address the convergence issue, we will need to control
the cardinality of {2, (pg), which by the labeling property, is the number of traces
(up to causal equivalence) « leading to £2,(po).

Let us try to see how this plays out with our earlier example, pg = p,p’, with
p=al(p,p), p' = d'(p',p') (or isomorphically gy = ago,a’qo)-

Call ¢y, the following trace (synch partners not represented in memories):

@-po—f 0-p,1-p
—7%0a0-p,0al -p,1a0 - p',1al - p
= 0a0-a(p,p),0al -a(p,p),
la0-d'(p',p'),1al - d'(p',p)
—7/%0a0a0 - p,0alal - p,0alal - p,0alal - p,
1a0a0 - p’,1al0al - p’,1alal - p', 1lalal - p’

—I* Hwe{071}k Ow(a) - p, Hwe{og}k lw(a) -p’ = px

where w(z), for w € {0,1}*, is defined as the fair interleaving of w and z* -
where x begins, eg 01(a) = alal.

Note that ¢ is maximally synchronous, in the sense that synchronizations
are all intra-generational. In this respect it is a very peculiar trace, and one
which is easy to compute with.

As the computation unfolds symmetrically, ¢ has 2¥ — 1 synchs, and its end
process pi, has 2811 threads, and each has a memory where a occurs k times.

Hence process pi has respective potentials:

VO(pk) = (2k - 1)511 < k2k+1€a = Vl(pk)

Non-causally equivalent realizations of ¢ (where synch partners are chosen dif-
ferently), can be obtained by picking different intra-generational matchings. Each
choice leads to distinct end processes py, all with the same V; and Vy potentials
- and thus all are in the intersection of 2y (,,) and 2y, ,,)-

There are [o<p, < 2" distinct such ¢ys, hence, using ne™" < nl, we get the
following lower bound on the cardinality of 2y (,,) and Qv p,):

(2k71)2k71672k71 S 2]671! S H 2h| (4)
0<h<k

Thus log |2y, ()| and |log 2y, (,,)| grow asymptotically faster than k25! log 2.

This entropic term will trump the term opposed by V which is asymptotically
equivalent to —2Fe,. The inescapable conclusion is that, no matter how costly
a synch on a + a’ is made to be, V will diverge, and, concretely, the process pg

11

will undergo an infinite growth if it follows this potential. So, we can forget Vj
for infinite state spaces.

On the other hand, V;’s term is —k2¥t1¢, which can control our lower bound
of the entropic term, if 4e, > log 2. So V; might still work.

Now (4) only provides a lower bound. As there are many other traces, using
extra-generational matchings, that might end up in the same level set, it is hard
to know how sharp it is. And, anyway, this is just an example. We have yet to
prove that for all pg, there are suitable choices of €, that will make V; converge.
This is what we do in the next section.

6 Main statement

We need a couple of combinatorial lemmas.

=k

Lemma 1. Suppose k > 0 and 1 ni =n, then Y, n;logn; > nlog(n/k).

Proof.

= —nS(n;/n) +nlogn

> —nlogk + nlogn
where, in the last step, we use S(n;/n) < logk, the usual upper bound on the
entropy over a finite set {1,...,k}. O

Lemma 2 (lower bound on tree depth). Consider the set of trees t with
mazimal branching 3, then for some ¢ > 0, ||t|| := >, 40 d(u) > ¢ - nlogn with
n = [t°| the number of internal nodes of t. Specifically, ¢ = 1/log4f works.

Proof. For n = 0,1, the lower bound holds for any c as the rhs is 0.
Suppose n > 2. We partition t into its £ immediate subtrees with non-zero
internal nodes, n; > 0; as n > 2, we know that k£ > 0.

[l =225 2o, ere diw) +1

= S + il

=n—1+3, [t

>n—1+c) , n;logn; by induction
>n—14c(n—1)log((n—1)/k) by Lemma 1

(n—1)(1—clogk)+c(n—1)log(n—1)
So we need to find ¢ such that for n > 2:

(n—=1)(1 —clogk)+c(n—1)log(n —1) > cnlogn
Set for x > 1:

g(x) =(x—1)(1 —clogk) + c(x — 1) log(z — 1) — cxlogx

12

We have g(17) =0, ¢’ (z) = 1—clog(zk/(x—1)) > 0 as soon as ¢ < 1/ log(zk/(z—
1)) =: h(z). (1/h) (z) = —=1/(x(z—1)) < 0for x > 1, so h is increasing on (1, o),
and if we take ¢ < 1/log2k, ¢ < h(x) for x > 2, and g increases for x > 2.

Now g(2) =1 — clog4k > 0 as soon as ¢ < 1/log 4k.

Set ¢ = 1/log4f where § is the maximum branching of ¢.

Clearly 8 > k, so we have g(z) > 0 for z > 2. O

Note that the proof gives explicit control in terms of the maximal branching
degree 8, namely ||t|| > nlogn/log4fB. If one allows arbitrary branching, any
tree t with all n—1 nodes right below the root of ¢ verifies ||¢|| = n—1. While the
(best) inequality says n —1 > nlogn/(2log2+log(n — 1)), which is true indeed.
Clearly the inequality is more interesting if one imposes a maximal branching
degree.

It is possible to specialize the inequality (which is central to the main con-
vergence result below) to the case of balanced trees. As these minimize depth
for a given number of internal nodes (else one can always move groups of sibling
leaves upwards, and in so doing decrease the potential), they should be a good
test of the sharpness of our lower bound. We consider only binary trees to keep
computations simpler.

Lemma 3 (balanced binary case). Let t;, be the balanced binary tree with 2"
leaves, equivalently n = 2% — 1 internal nodes, k > 0:

[tk = Zl§i<k i2' = (n+1)log(n+1)/log2 — 2n

Proof. The formula holds for k = 0, 1, and ||¢o||=]/¢1]|=0.
Suppose k, the number of ‘generations’ in t, is strictly positive.
As tj, has 2% leaves, 2¥ — 1 internal nodes, we have by induction on the last
generation of the tree:
Jal =0
k1]l = k2% + ||t

Therefore [[te]| = > 1<, i2¢.
Set ¢p(x) = (zF = 1)/(x = 1) = Y gc;p ' We have:

(x) = Zl§i<k izl = ((k— Da* — kb1 +1)/(x — 1)2
Hence 37, ;112" = 2¢/(2) = 2((k — 1)2F — k2M1 41) = k28 — 2F1 4 2.0

Therefore, in this case the inequality of Lemma 2 amounts to saying that
(n+1)log(n +1)/log2 — 2n > nlogn/3log2 (with 8 = 2) or equivalently:

(n+1)log(n+1) >1/3-nlogn+ (2log2)n

which is indeed true for n > 0 and a rather sharp estimate for small values of n.
This means that the lower bound provided by Lemma 2 is good.

13

6.1 Lower bound on the potential

With Lemma 2 in place, we can bound below the energy of a process/trace with
a given number of synchs. But first, we need to fix some notations.

As in §4-5, we suppose given a process pg, and consider only computation
traces starting from the initial state @ - py.

We write T'(n) for the set of traces containing n synchs, considered up to
causal equivalence, and set €, := minge A+ €4, for the minimal energetic cost of
a synch. We also write (2,,(po) for the set of processes reachable in n synchs.

As traces originating from the initial state are isomorphic to their end points,
ie T(n) ~ £2,(po), we will treat traces from &-py and processes in £2(pg) as nearly
Synonymous.

We suppose given an upper bound « on the number of processes that can
synchronize at once during an execution of & - py. Eg @ = maxgeax |al, the
maximal synch size in A*.

We write § for the thread increment of a particular forking event in a trace.
This means that one replaces one thread with J + 1 ones. We suppose also that
we are given two numbers (eg obtained from a trivial syntactic analysis) such
that 8_ < d+ 1 and § < B4 always hold. If 3_ > 1, then § > 0, which amounts
to saying that the number of threads always increase under fork.

We can establish the following lower bound on the potential:

Lemma 4. Suppose f_ > 1, €, >0, p € £2,(po):

€m

log4 + log(B+ + 1)

-nlogn < Vi(p)

Proof. Consider the set U(n) of trees with n internal nodes labeled in A*. It
clearly makes sense to extend the definition of V; to such labeled trees.

Consider ¢t € U(n), n > 0, and v an internal node in ¢t with label a, all the
children of which are leaves (so that u is on the boundary of the set of internal
nodes). Define t\u € U(n—1) as the tree obtained from ¢ by erasing the §(u)+1
leaves right below u (as well as u’s label).

Write I'(u) for the multiset of occurences of labels above u, and d(u) for
the depth of w in ¢ (as we have already done above). We can bound below the
difference of potential incurred by erasing the é(u) + 1 children of w:

€a 1 O(u)(€, I'(u))

Vl(t) — Vl(t\u) 1
(u)

O(u) +
mo(u)d
md(w)
We have used d(u) > 0.

It follows that V/e,, decreases by chunks of at least d(u) for each deletion of
a node on the internal boundary, therefore V' (t)/ey, > >, d(u;) =: [|t]|, and we
can apply Lemma 2, to obtain V'(¢)/€,, > nlogn/logd(8+ + 1).

As any p in £2,,(po) projects to a labeled tree in U(n), by forgetting the infor-
mation on communication partners and remainders, and this forgetful operation
leaves V7 invariant, the statement follows. [J

14

With the same notations as in the proof above, consider a leaf v € ¢, and
define ¢(u,v) as the new tree obtained by moving the leaves below u, to below
v; clearly, if d(v) < d(u), d(t(u,v)) < d(t). If no such move exists, by definition
t is balanced. So, as alluded to earlier, the lower bound we get for the potential
is obtained for balanced concurrent structures of execution - and as they have
lower energies, they will be highly favoured by the dynamics. In other words,
our potential V7 penalizes depth - one could call it a breadth-first potential - and
different threads will tend to stay synchronous.

We turn now to the other pending question, namely that of binding above
the entropy (that is to say the logarithm of the cardinality) of the set of traces
of a given number of synchs.

6.2 Upper bound on the number of traces

Dually to Lemma 4, which a lower bound on potentials, we can derive an upper
bound on entropies:

Lemma 5. For large ns, log|T'(n)| < B+a?0O(nlogn)

Proof. By induction on n, there are at most §p+nf,a threads in the end process
of a trace in T'(n), as each synch adds at most da new threads, where we have
written dg for the initial number of threads in pg.

Any trace with n 4+ 1 synchs can be obtained (perhaps in many ways but we
are looking for an upper bound) by synching one of length n, so [T'(n + 1)| <
|T(n)|(60 + nBra)®. As T(0) = 1, we get log|T(n)| < alog(dy + nfra)l.

Since:

1—-n+nlogn<logn!<1l—n+(n+1)logn

it follows that log(dg + nfia)! ~ BraO(nlogn). O

The first inequality is sharp if all synchs are possible, and one has the maximal
thread count, and no sums (as they decrease the number of matches), which is
exactly the situation of the explosive example of §5.

As the arithmetic progression that gives rise to the factorial, samples the fac-
torial only with frequency 1/da (this is sometimes called a shifted j-factorial [18,
p.46], where j = «d, and the shift is g in our example), it seems the upper bound
above could be improved. But, if we return to the maximal synchronous traces
computed in §5, we see that the bound above is quite sharp, so it seems unlikely.

6.3 Convergence

Now we can put both bounds to work to get the convergence of our potential.

Proposition 1. Suppose 1 < B_, and Bra?log(4(By + 1)) < €m, then:

Z(po) := ZpEQ(po) e V1ilP) < 40

15

Proof. We can partition Z(py) by number of synchs:

Z(po) = X0 Speor o € Y
< 3, e~emnlogn/logd(B+41) . |T(n)| by Lemma 4

By Lemma 5, the logarithm of the general term of the upper series is equivalent
to —emnlogn/logd(By + 1) + Bra?0(nlogn), so both series converge if €,, >
da?log(4(B+ +1)). O

We can summarise our findings:

Theorem 1. Consider a reversible process @ -pg equipped with a rate function q
which satisfies the §4.1-constraints of the V1 potential; suppose that for any fork
event in £2(po), the thread increment § verifies 0 < § < B4 for some constant
B+, and assume that for a € A*, Vi stipulates a synch cost €, which is at least
maxqca- |al® - By log(4(By + 1)).

Then q has an equilibrium on £2(po) defined as m(p) oc e=V1(P),

6.4 Discussion

This concludes the comparison of the potentials introduced in §4. Unlike the
potential V5 which is not enough to control growth (as we have seen in §5), V;
which forces forking costs to increase with the size of the local memory will,
when parametrized suitably, lead to an equilibrium.

Note that 1) the condition given above on the minimal energy cost is a
sufficient one, and might not be necessary (we don’t know at the time of writing),
2) in particular, to obtain refined effects on the equilibrium population of certain
level sets, and therefore modulate the search, one might need more flexibility.
Whether this is possible and useful remains to be seen.

As said in §2, for general reasons in the theory of continuous-time Markov
chains, the symmetry of the underlying transition graph guarantees that the
probabilistic state of the system converges to the invariant probability m(p) de-
fined above. This avoids co-Zenoid situations where the probability of return to
a p is 1, while the mean return time is actually infinite. Here we are guaranteed
finite mean return times. This form of probabilistic termination, which does not
lose itself in infinite branches, is the technical definition of exhaustivity. It is
easy to construct examples (and we have seen one earlier in §5) where one has
an invariant measure, and almost certain returns, but infinite mean return times.
This is why it is fundamental to prove the convergence of Z(py).

The restriction to a minimum branching degree 5~ > 0 is not very strong,
as one can always use some padding with null processes to make the minimal
forking degree higher. Nevertheless, it would be nice to have a more elegant way
to deal with non-expansive forks, as surely they cannot seriously stand in the
way of convergence.

16

7 Conclusion

There has been a lingering desire in concurrency theory for a metaphor of com-
putation as a physical process. We present here evidence that one can promote
this metaphor to an operational conceptualization of a certain, arguably rather
abstract, type of distributed programming. Specifically, we have shown how a
slightly generalized version of reversible CCS can be equipped with a distributed
potential. This potential is parametrized by costs for different types of synchro-
nizations, in a way that any process eventually reaches a probabilistic equilibrium
over its reachable state space - provided that the rate at which processes fork
decreases exponentially as a function of the size of the local history.

Much remains to be done.

It would be interesting to see how our findings can be adjusted to a less ab-
stract model of distributed computing, and whether one can find examples where
this technique solves problems. We intend to seriously pursue such examples in
the future, perhaps in the field of multi-party and simultaneous transactions. To
talk about efficiency, solutions, and examples, one needs to make room for the
inclusion of irreversible synchronizations expressing success states. This, we have
done already in the qualitative case [2], and the extension should be straightfor-
ward.

Another natural companion question is to optimize parameters for efficiency
of the search mechanism. Instead of minimizing the time to irreversible synchs
(aka commits), which begs the question, one could use as a proxy the following
objective. Namely to maximize the equilibrium residency time of the search re-
flected on success states ps which live on the boundary X of the fully reversible
state space:

argmaxe.y oy 7(€,p) = [Lox dr
(by reflected search we mean that irreversible synchs are de-activated, and,
hence, the process bounces off the success boundary) where 7 is the equilibrium
probability, and € its energy vector. Such quantities are nice optimization targets
as they can estimated via the ergodic theorem by the averages % S 1ox (Xk), ie
the empirical time of residence in a success state (under reflective regime). From
there on, it seems one might be in a good position to interface with machine
learning techniques to discover efficient parametrizations.

One can also think of this result as a termination one, more in line with the
tradition of rewriting and proof-theory. Of course, it is a kind of termination, just
as in actual physical systems, which does not mean the complete disappearance
of any activity in the system, but rather the appearance of a steady or stable
form of activity. As such, it introduces a discourse on resources which is not
the one commonly offered in relation to termination proofs in the context of
programming languages and rewriting systems, where one tries to limit copies,
sizes, and iterations. There has been a thread of research studying termination by
various typing systems in process languages (for a recent example, see Ref. [(])
- here we propose what seems a fundamentally different way to achieve the
same, in a probabilistic setting, and one wonders if perhaps there is a fruitful
relationship to be established.

17

Finally, it seems that one could squeeze more out of the statistical physical
metaphor, and start thinking about the concepts of temperature (which here is
degenerate, as it only measures the energy scale) as they are used in the context
of sequential simulated annealing algorithms, where the potential can change
over time.

References

1. Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004, 15th International Conference, London. Lecture
Notes in Computer Science, vol. 3170, pp. 292-307. Springer (2004)

2. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005, 16th International Conference, San Francisco. Lecture Notes in
Computer Science, vol. 3653, pp. 398-412. Springer (2005)

3. Danos, V., Krivine, J., Tarissan, F.: Self-assembling trees. Electr. Notes Theor.
Comput. Sci. 175(1), 19-32 (2007)

4. Danos, V., Oury, N.: Equilibrium and termination. In: Cooper, S.B., Panangaden,
P., Kashefi, E. (eds.) Proceedings Sixth Workshop on Developments in Computa-
tional Models: Causality, Computation, and Physics. EPTCS, vol. 26, pp. 75-84
(2010)

5. Danos, V., Oury, N.: Equilibrium and termination II: the case of Petri Nets. Math-
ematical Structures in Computer Science (2011), to appear

6. Demangeon, R., Hirschkoff, D., Kobayashi, N., Sangiorgi, D.: On the complexity of
termination inference for processes. Trustworthy Global Computing pp. 140-155
(2008)

7. Diaconis, P.: The Markov chain Monte-Carlo revolution. AMS 46(2), 179-205
(2009)

8. Krivine, J.: Algebres de Processus Réversible - Programmation Concurrente
Déclarative. Ph.D. thesis, Université Paris 6 & INRIA Rocquencourt (Nov 2006)

9. Krivine, J.: A verification algorithm for declarative concurrent programming.
CoRR abs/cs/0606095 (2006)

10. Kwiatkowski, M., Stark, I.: The continuous w-calculus: A process algebra for bio-
chemical modelling. In: Computational Methods in Systems Biology: Process of
the Sixth International Conference CMSB 2008. pp. 103-122. No. 5307 in Lecture
Notes in Computer Science, Springer-Verlag (2008)

11. Lanese, 1., Mezzina, C.A., Stefani, J.B.: Reversing higher-order pi. In: Gastin, P.,
Laroussinie, F. (eds.) CONCUR. Lecture Notes in Computer Science, vol. 6269,
pp. 478-493. Springer (2010)

12. Lévy, J.J.: Réductions correctes et optimales dans le A-calcul. Ph.D. thesis, These
de doctorat d’Etat, Université Paris 7 (1978)

13. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., et al.: Equa-
tion of state calculations by fast computing machines. The journal of chemical
physics 21(6), 1087 (1953)

14. Milner, R.: Communication and concurrency. International Series on Computer
Science, Prentice Hall (1989)

15. Norris, J.: Markov chains. Cambridge University Press (1998)

16. Ollivier, J., Shahrezaei, V., Swain, P.: Scalable rule-based modelling of allosteric
proteins and biochemical networks. PLoS Computational Biology 6(11) (2010)

18

17.

18.

19.

Prasad, K.V.S.: Combinators and bisimulation proofs for restartable systems.
Ph.D. thesis, University of Edinburgh (1987)

Schmidt, M.: Generalized j-factorial functions, polynomials, and applications.
Journal of Integer Sequences 13(2), 3 (2010)

Streater, R.: Statistical dynamics. Imperial College Press (1995)

19

	On the Statistical Thermodynamics of Reversible Communicating Processes

