
Coverage Semantics for Dependent Pattern
Matching

Joseph Eremondi1[0000−0002−9631−4826] and Ohad Kammar2[0000−0002−2071−0929]

1 Department of Computer Science, University of Regina, Regina, SK, Canada
jeremondi@uregina.ca

2 Laboratory for the Foundations of Computer Science, University of Edinburgh,
Edinburgh, Scotland, United Kingdom

ohad.kammar@ed.ac.uk

Abstract. Dependent pattern matching is a key feature in dependently
typed programming. However, there is a theory-practice disconnect: while
many proof assistants implement pattern matching as primitive, theoret-
ical presentations give semantics to pattern matching by elaborating to
eliminators. Though theoretically convenient, eliminators can be awk-
ward and verbose, particularly for complex combinations of patterns.
This work aims to bridge the theory-practice gap by presenting a direct
categorical semantics for pattern matching, which does not elaborate to
eliminators. This is achieved using sheaf theory to describe when sets of
arrows (terms) can be amalgamated into a single arrow. We present a
language with top-level dependent pattern matching, without specifying
which sets of patterns are considered covering for a match. Then, we give
a sufficient criterion for which pattern-sets admit a sound model: patterns
should be in the canonical coverage for the category of contexts. Finally,
we use sheaf-theoretic saturation conditions to devise some allowable sets
of patterns. We are able to express and exceed the status quo, giving
semantics for datatype constructors, nested patterns, absurd patterns,
propositional equality, and dot patterns.

Keywords: semantics, dependent pattern matching, sheaf, coverage

1 Introduction

Pattern matching is a core feature in dependently typed programming. With pat-
tern matching one can specify a function consuming an input by giving functions
for every possible way that input might have been constructed. For dependent
types, the defined function can be a universally quantified proof, giving a Curry-
Howard analogue of proof-by-cases.

However, there is a disconnect between the theory and practice of dependent
pattern matching. Many dependently typed languages take pattern matching as
a built-in user-facing construct: Coq [4], Agda [22], and Idris [5] all contain a form
of dependent pattern matching in their core calculi. However, most theoretical
treatments of dependent types deal with eliminators [19]: primitive recursors

2 Joseph Eremondi and Ohad Kammar

with result types dependent on a value of the eliminated type. Eliminators and
pattern matching are equally expressive, with or without with Axiom K [12, 6].

While it is possible to express all pattern matches using eliminators, it is not
always convenient. Some pattern matching features require lengthy translations
when converting to eliminators, such as overlapping patterns, catch-all branches,
or matching on multiple values at once. Moreover, languages differ in which pat-
tern matches they allow, so every variant of pattern matching requires a new
eliminator-translation to prove consistency. Even the implementations of depen-
dently typed languages are restricted by eliminators, since most pattern matches
are elaborated into case trees with a 1:1 correspondence between branches and
constructors of an inductive type.

The contribution of this paper is to narrow the theory-practice divide with a
highly general syntax (Section 2) and categorical semantics for dependent pat-
tern matching (Section 3). The semantics is direct and generic: pattern matches
are translated directly into semantic objects without desugaring to eliminators
or case trees, and the semantics is parameterized over an abstract coverage spec-
ifying which sets of patterns one can match against. We investigate the vision
set forth by Epigram [20, 21] to enable diverse pattern-matching abstractions
that go beyond the list of constructors declared by a datatype. We focus on
non-overlapping patterns, but give a potential road map to supporting overlap.

In constructing our generic semantics, we present a general sufficient crite-
rion for when a coverage leads to well-defined pattern matches without compro-
mising logical consistency (Section 4), mechanized in Lean [11]. We define this
criterion, drawing on parallels between dependent pattern matching and the the-
ory of sheaves on a site, discovering that it is sufficient for each allowed set of
patterns to correspond to a cover in the canonical coverage for the semantic cate-
gory. Moreover, we use elementary results from sheaf theory to describe a group
of closure operations which preserve the canonicity of a coverage (Section 5).
These give a simple and direct way to model common features like multi-value
matches, nested patterns, and matching on propositional equality proofs. With
the exception of recursion, we achieve feature parity with the original presen-
tation of dependent pattern matching by Coquand [9]. We conclude with an
illustrative example (Section 6) and related and future work (Section 7).

A major contribution of our work is expressing pattern matching in the lan-
guage of categories and sheaves. Our approach is semantic: instead of elaborating
pattern matching syntax, we take pattern matches as primitive and work directly
in the semantic domain, avoiding the need to consider eliminators as a syntactic
primitive. The connection has been implicit for many decades, but we make it
formal. That said, we only assume basic knowledge of functors, pullbacks, and
slice categories, and we present all the required sheaf theory.

2 CoverTT: The Source Language

We begin with a variant of Martin Löf Type Theory, called CoverTT, pa-
rameterized over which sets of patterns can be matched against. Drawing from

Coverage Semantics for Dependent Pattern Matching 3

sheaf-theory terminology, when a set of patterns is permissible on the left-hand
side of a pattern match we call it a cover, and say it is covering. The set of all
covers together is called a coverage. The main distinct feature of CoverTT is
that it is parameterized over a coverage.

2.1 The Anatomy of a Datatype

As they are presented in most dependently typed languages, inductively defined
datatypes conflate four different concepts. Consider the quintessential inductive
family of length-indexed vectors:

data Vec (A : U) : (m : N)→ U where

nil : Vec A 0

cons : (n : N)→ A→ Vec A n→ Vec A (n+ 1)

This definition implicitly relies on the following concepts, the separation of which
motivates the design CoverTT (as exhibited in Section 2.3).

– Coproducts: An inductive type behaves like the sum of its constructor
types. For Vec, it behaves like 1+(A×Vec A n). In CoverTT, each induc-
tive I is declared at the top level to have a finite collection of constructors
DI

1 . . . D
I
n, each of which has a type ending in I.

– Dependent fields: each constructor has a dependent product type, so the
arguments to a constructor are a curried dependent record, where the types
of later fields can depend on the values of earlier ones. For Vec, in cons the
return type and the type of the tail of the list depend on the earlier parameter
n. In CoverTT, the type of a constructor is given as a telescope, where the
types of later entries are allowed to depend on the values of previous entries.

– Indexing: each constructor implies a specific equation about the index val-
ues. For Vec, nil restricts that m = 0 and cons restricts that m = n + 1. In
CoverTT, we use Fording [18], where each constructor has an identical
return type, but may constrain type parameters using equality-proof fields.
We treat equality as primitive and make it the only way to constrain indices
of a constructor, simplifying the models of CoverTT.

– Recursion: inductive types can refer to themselves in fields, except to the
left of a function arrow, a condition known as strict positivity. Typically, one
can define structurally recursive functions over Vec. Here, Vec occurs as a
field type for cons, which is allowed because it is not to the left of an arrow
type. We omit recursion from CoverTT, as we believe it requires a separate
toolkit of abstractions. In Section 7.2 we discuss its possible addition. In
examples, we refer to some inductive types defined using self-reference, such
as vectors or natural numbers.

Restricting to Top-Level Datatypes CoverTT only allows data types and pat-
tern matches to be declared at the top level. The parameter and constructor
types of datatypes must be typeable in the empty context, though they can re-
fer to other data types. Likewise, the branches and motive of a pattern match

4 Joseph Eremondi and Ohad Kammar

must be typeable in the empty context. These assumptions simplify the presenta-
tion of CoverTT while reflecting how datatypes are implemented in languages
like Agda, where declarations in a non-empty context are desugared into top
level declarations with extra parameters. Treating nested patterns and arbitrary
coverages is an interesting problem even with top-level matches, and requires
substantial technical developments even to handle ordinary matching.

2.2 Syntax and Typing

The syntax for CoverTT below is standard, except for the separation of con-
cerns from Section 2.1. Figure 1 gives the syntax, along with typing rules for
CoverTT.

Overline arrows denote sequences, while bold metavariables denote depen-
dent sequences, e.g. substitutions. Variables are assigned types from the context.
Typing for dependent functions and equality is standard, with rules for their

Term ∋ s, S, t, T ::= x | U | Π(x : S). T | λx. t | t s | s =T t | reflt

| I t | DI t | case (t : Γ) to T of {
−−−−−−−→
∆i. si ⇒ t

i
}

Ctx ∋ Γ,∆,Ξ ::= · | Γ, (x : T)

Subst ∋ s, t ::= · | s # t

Γ ⊢ t : T (Well Typed Terms/Types) {ti}i ∢Ξ (Covering Patterns)

TypeConv
Γ ⊢ t : S

Γ ⊢ S ≡ T : U
Γ ⊢ t : T

TyVar
⊢ Γ ctx

(x : T) ∈ Γ

Γ ⊢ x : T

TyPi
Γ ⊢ S : U

Γ, (x : S) ⊢ T : U
Γ ⊢ Π(x : S). T : U

TyApp
Γ ⊢ t : Π(x : S). T

Γ ⊢ s : S

Γ ⊢ t s : [s/x]T

TyLam
Γ, (x : S) ⊢ t : T

Γ ⊢ λx. t : Π(x : S). T

TyRefl
Γ ⊢ t : T

Γ ⊢ reflt : t =T t

TyInd
Params(I) := ∆ Γ ⊢ t ⇒ ∆

Γ ⊢ I t : U

TyEq
Γ ⊢ T : U Γ ⊢ s : T

Γ ⊢ t : T

Γ ⊢ s =T t : U

TyCtor
Fields(DI) := ∆,Ξ Γ ⊢ s ⇒ ∆

Γ ⊢ t ⇒ [s/∆]Ξ

Γ ⊢ DI t : I s

TyCase
⊢ Ξ ctx Γ ⊢ tscrut ⇒ Ξ Ξ ⊢ Tmotive : U

−−−−−→
⊢ ∆i ctx

i −−−−−−−−−→
∆i ⊢ si ⇒ Ξ

i

⊢ {si}i ∢Ξ
−−−−−−−−−−−−−−−−→
∆i ⊢ ti : [si/Ξ]Tmotive

i

Γ ⊢ case (tscrut : Ξ) to Tmotive of {
−−−−−−−→
∆i. si ⇒ ti

i
} : [tscrut/Ξ]Tmotive

Fig. 1. CoverTT: Term Typing

Coverage Semantics for Dependent Pattern Matching 5

⊢ Γ ctx (Well Formed Contexts) Γ ⊢ t ⇒ ∆ (Well Formed Substitutions)

CtxNil

⊢ · ctx

CtxCons
⊢ Γ ctx Γ ⊢ T : U

⊢ Γ, (x : T) ctx

EnvNil

Γ ⊢ · ⇒ ·

EnvCons
Γ ⊢ s ⇒ ∆ Γ ⊢ t : [s/∆]T

Γ ⊢ s # t ⇒ ∆, (x : T)

Fig. 2. Typing: Contexts and Substitutions

types, introduction, and elimination. The equality type is intensional, and there
is no reflection rule by which propositional equalities can be made judgmental
equalities. Nevertheless, CoverTT is consistent with models that identify all
propositionally-equal terms. We have no J-axiom, instead using the coverage to
specify how to match on reflt. We have one universe which does not have a
type, leaving a universe hierarchy for future work.

Contexts and Substitutions Figure 2 also specifies well-formedness rules
for contexts and substitutions. Contexts are sequences of typed variables, where
later types may refer to variables from earlier in the context. Substitutions are the
inhabitants of contexts. The rules are like an iterated version of dependent pairs:
the type of the later values in the substitutions may depend on the earlier values.
We borrow the notation Γ ⊢ t⇒ ∆ from Hofmann [14], since such a substitution
corresponds to a morphism Γ −→ ∆ in the models we define. We use the notation
[s/∆]t to denote the simultaneous substitution of the variables bound in ∆ by
the terms of s in t. If Γ ⊢ s⇒ ∆ and ∆ ⊢ t : T , then Γ ⊢ [s/∆]t : [s/∆]T .

Datatype and Pattern Matching Syntax We assume a fixed collection of
inductive type constructors, along with data constructors. For each datatype
there is a fixed context of parameters Params(I) and, for each constructor, fields
Fields(DI), such that ⊢ Params(I),Fields(DI), i.e., both are well-formed and the
fields may depend on the parameters. The type I t denotes the type constructor
I applied to parameters t. DI t is the data constructor D for the type I, given
t for its fields. We omit I in DI when it is clear from context.

The pattern matching form is a nameless version of defining functions by
multiple pattern matching clauses, as in Agda or Idris. The term

case (t : Ξ) to T of {
−−−−−−−→
∆i. si ⇒ ti

i
}

denotes a match on scrutinees t of context-type Ξ, producing a result of the
motive type T , where T may refer to the variables bound in Ξ. The branches,
indexed by i, each have a left–side pattern si, which may contain pattern vari-
ables from the context ∆i, and which produces a result ti. The scrutinee is a
substitution because pattern matching functions can take multiple arguments,
and the types of later arguments can depend on the values of earlier ones.

6 Joseph Eremondi and Ohad Kammar

Typing Pattern Matches The TyCase typing rule (Fig. 1) is the most im-

portant rule. To type Γ ⊢ case (tscrut : Ξ) to Tmotive of {
−−−−−−−→
∆i. si ⇒ ti

i
}, the

scrutinee inhabits some Ξ. Because pattern matching is dependent, the motive
Tmotive is indexed over the scrutinee type. The pattern si for each branch inhabit
the scrutinee type Ξ in the context of its pattern variables ∆i. Each branch is
typed against the context of its pattern variables, and inhabits the motive for the
scrutinee value given by that branch’s pattern, e.g., si. Finally, the entire match
inhabits the motive type, instantiated to the scrutinee. Critically, the motive
Tmotive and each branch ti must be typeable in the closed context ∆i, making
no reference to Γ . This restriction matches practice: in Agda and Idris, pattern
matching elaborates to top level declarations. We give an example in Section 2.3.

The Generic Coverage Relation In a match, the patterns si must be cov-
ering. At no point do we require the patterns of a match to correspond to con-
structors of an inductive type, or even that the matched upon type be inductive.
Instead, we appeal to an arbitrary judgment {si}i ∢Ξ, relating sets of substitu-
tions to contexts. This relation is to be read as “the patterns s1 . . . sn are a total
decomposition of the context Ξ”. This relation replaces the usual condition that
there must be a case for each constructor of the datatype. It is the parameter
by which we tune CoverTT, and can take many forms, from requiring a single
scrutinee with exactly one branch per constructor, to allowing multiple scruti-
nees with arbitrary nested patterns and absurd branches omitted. Section 4.2
explores the conditions a coverage must satisfy to result in a well-behaved type
theory. In general, we expect that a coverage will consist of a basis set of cov-
erings, containing at least variables and constructors for each datatype, which
can be closed under composition, concatenation, etc. For generality we do not
require closure conditions, but we show in Section 5 they are always permissible.

Computational Rules Figure 3 gives definitional equality for CoverTT,
omitting structural (reflexivity, symmetry, transitivity) and congruence rules.
Rule EqApp is the usual β-reduction. In EqMatch, we reduce a match when
the scrutinee is [tmat/∆j]sj for some Γ ⊢ tmat ⇒ ∆j , i.e., it is a pattern applied
to values for the pattern variables of sj. This substitution tmat instantiates the
pattern variables in tj , which is the value of the entire match.

2.3 Example: Vectors

To see these constructs concretely, we show how length-indexed vectors from
Section 2.1 would be represented in our system, along with a type safe head
function. In CoverTT, vectors can be defined using labelled sums. Notice the
equality-type fields which encode the index constraints via Fording.

Params(Vec) := ·, (A : U), (n : N)

Fields(NilVec) := ·, (A : U), (n : N), (eq : n = 0)

Fields(ConsVec) := ·, (A :U), (n :N), (m :N), (h :A), (t :VecAm), (eq :n = m+1)

Coverage Semantics for Dependent Pattern Matching 7

Γ ⊢ t = s : T (Term Definitional Equality) ⊢ Γ ≡ ∆ ctx (Equal Contexts)

Γ ⊢ t ⇒ ∆ (Equal Substitutions)

EqMatch

⊢ Ξ ctx
−−−−−→
⊢ ∆i ctx

i
j ∈ {1 . . . i}

Γ ⊢ tmat ⇒ ∆j Ξ ⊢ T : U
−−−−−−−−→
∆i ⊢ si⇒Ξ

i
⊢ {si}i ∢Ξ

−−−−−−−−−−−−→
∆i ⊢ ti : [si/Ξ]T

i

Γ ⊢ case ([tmat/∆i]sj : Ξ) to T of {
−−−−−−−→
∆. si ⇒ ti

i
} ≡ [tmat/∆j]tj : [tmat/∆j][sj/Ξ]T

EqApp
Γ, (x : S) ⊢ t : Π(x : S). T Γ ⊢ s : S

Γ ⊢ (λx. t) s ≡ [s/x]t : [s/x]T

EqCtxNil

⊢ · ≡ · ctx

SubNil

Γ ⊢ · ≡ · : ·

EqCtxCons
⊢ Γ ≡ Γ ′ ctx Γ ⊢ T ≡ T ′ : U
⊢ Γ, (x : T) ≡ Γ ′, (x : T ′) ctx

SubCons
Γ ⊢ s ≡ s′ : ∆ Γ ⊢ t ≡ t′ : [s/∆]T

Γ ⊢ s # t ≡ s′ # t′ : ∆, (x : T)

Fig. 3. Definitional Equality: Computational Rules

In Agda-style notation, a safe head function for vectors can be written:

head : (A : U)→ (n : N)→ Vec A (1 + n)→ A

head A n (Cons h t) = h

In CoverTT this would be defined as:

head : Π(A : U)(n : N)(x : Vec A (n+ 1)). A

head := λA. λn. λx. case (· #n #x : ·, (n : N), (x : VecA (n+ 1))) to A of {
·, (m : N), (h : A), (t : VecAm). · #m #ConsA (m+ 1)mh t reflm+1 ⇒ h}

That is, the function takes A, n, and x as type, number, and vector param-
eters. It then passes those parameters as the scrutinee of the pattern match,
which is annotated with their types. The annotation is a telescope of types, so
it introduces new names for the scrutinees. It happens that here we are passing
names as the scrutinees, but this need not be the case, which is why we need
new names for them. The result type is annotated as A. The match has a single
branch, with a telescope of pattern variables m, h and t with their types. The
pattern for the branch has m+ 1 as the value for scrutinee n and Cons applied
to its arguments for scrutinee x. Finally, to the right of ⇒ is the result for this
case, which is h.

Implicit in this example is the need for the following to hold:

{·, (m : N)(h : A), (t : Vec A m). · #m #Cons A (m+ 1) m h t reflm+1}
∢·, (n : N), (x : Vec A (n+ 1))

8 Joseph Eremondi and Ohad Kammar

That is, the pattern for the single branch needs to cover the scrutinee type.
Deducing that these patterns are a valid coverage involves seeing that reflm+1

constrains the value of n and that Nil has an absurd type.
The goal of this paper is to define direct semantics that justify such deduc-

tions, and give a broad framework to define valid coverages.

3 Categorical Models of CoverTT

In this section, we translate the syntactic constructs of CoverTT into the lan-
guage of Categories with Families (CwFs). CwFs correspond almost exactly
to the syntactic structure of dependent type theory, but with syntactic sub-
stitution replaced by a semantic operation, and with implicit liftings between
contexts made explicit.

3.1 Background: Categories with Families

We recapitulate the definition and notation of CwFs, a categorical model for
dependent type theory that follows the syntax fairly closely. See Hofmann [14]
for more details.

Recall that a family X is a pair (IX , X) consisting of a set IX and an I-
indexed sequence of sets (Xi)i∈I . A map of families f : X → Y is a pair (fI , f)
consisting of a function fI : IX → IY and an I-indexed sequence of functions
(fi : Xi → Y fi)i∈I . The category Fam has families as objects and maps of
families as morphisms, with componentwise identity and composition structure.

A basic CwF C is a pair (Co, F) consisting of a category Co and a functor
F : Cop

o → Fam. The functor F packs four pieces of structure which we’ll unpack
using the following notation:

– Objects Γ ∈ Co are contexts, and morphisms θ : Γ → ∆ are substitutions.
– For every context Γ ∈ Co, we denote the family FΓ by (Ty(Γ),TmΓ (_)).

We call the elements of its indexing set Ty(Γ) the types in context Γ . For
each type in T ∈ Ty(Γ), we call the element of the component TmΓ (T) the
terms of type T in context Γ . We omit Γ when it is clear from context.

– For every substitution θ : Γ → ∆, we have a map of families Fθ : FΓ ← F∆,
and we use the same notation for both its components Fθ = (_{θ},_{θ})
and call both substitution functions. The first component is the sub-
stitution function on types _{θ} : Ty(Γ) ← Ty(∆). The second com-
ponent is a sequence of substitution functions on the terms of each type
_{θ} : TmΓ (T{θ})← Tm∆(T).

– The functoriality of F amounts to the following four properties, which we
call the substitution lemma for this CwF, where T ranges over Ty(Γ), t
ranges over TmΓ (T):

T{idΓ } = T t{idΓ } = t T{θ ◦ σ} = (T{θ}){σ} t{θ ◦ σ} = (t{θ}){σ}
(where Ξ

θ−→ ∆
σ−→ Γ)

Coverage Semantics for Dependent Pattern Matching 9

A basic CwF includes only the bare bones of semantic models for a dependent
type theory. In order to model dependent type theories of interests we need to
equip them with additional structure.

We start with context extension. Let C be a basic CwF, and assume Co has a
terminal object ·. A comprehension structure (▷, p, v) over C consists of, for
each context Γ ∈ Co and type T ∈ Ty(Γ):

– A context Γ ▷ T , the context Γ extended by T .
– A substitution pT : Γ ▷ T → Γ , the weakening of Γ by T . We say that we

weaken a type or a term by T when we apply the corresponding substitution
function for the weakening pT .

– A term vT ∈ TmΓ▷T (T), the variable we extend the context Γ with.
– Moreover, for every substitution θ : ∆→ Γ and term t ∈ Tm∆(T{θ}) there

is a unique substitution ⟨θ, t : T ⟩ : ∆→ Γ ▷ T satisfying:

pT ◦ ⟨θ, t⟩ = θ vT {⟨θ, t⟩} = t

We call this substitution the extension of the substitution θ by t. In the
sequel we omit the type ascription and write ⟨θ, t⟩ for ⟨θ, t : T ⟩ when T is
clear from context. Likewise, we omit the subscript on p and v when clear.

A CwF is a basic CwF together with comprehension structure. For a CwF C =
(Co, F), we refer to Co as C when doing so will cause no ambiguity.

3.2 Sections, Slices, and Dependent Types

Let C be a category and Γ ∈ C an object in it. Recall the slice category C/Γ
whose objects (T, d) consist of an object T ∈ C and a morphism d : T → Γ .
Morphisms f : (T, d) → (S, e) in the slice are morphisms f : T → S that lift d
through e, i.e.: e◦f = d. For example, a section of Γ is a morphism out of (Γ, id)
in the slice C/Γ , i.e., an object T ∈ C, and a pair of morphisms f : Γ → T and
d : T → Γ such that d ◦ f = id.

We can use the slices of a category C to model dependent type theory by
requiring C to be locally Cartesian closed (LCCC). The intuition behind this
structure is that the object (T, d) in the slice C/Γ represent types T in context
Γ , and d represents the dependency of terms of this type on their context. We
will not recapitulate the LCCC conditions explicitly. We will, however, spell the
induced LCCC structure needed for a CwF, for two reasons. First, we indicate
what we have formalized in lean. Second, we rely on this relationship between
type families and slice objects in Section 4. It lets us use core results of sheaf
theory to model dependencies in pattern matching.

Lemma 1. (✓lean) Let C be a CwF.

– The weakening pT : (Γ ▷ T) → Γ encodes the type T as the slice object
((Γ ▷ T), pT), in the sense that sections of Γ correspond to terms in context
Γ :

TmΓ (T) ∼= Hom(C/Γ)

(
(Γ, id) , (Γ ▷ T, pT)

)

10 Joseph Eremondi and Ohad Kammar

– The morphisms in C encode indexed types—for all Γ,∆ ∈ C, T ∈ Ty(Γ), and
θ : ∆→ Γ :

Tm∆(T{θ}) ∼= Hom(C/Γ)

(
(∆, θ) , (Γ ▷ T, pT)

)
For t ∈ TmΓ (T) we write t : Γ → Γ ▷ T for ⟨id, t⟩, the corresponding p-section.

3.3 Semantic Type Formers and Closedness

CwFs give the core structure of type dependency, but give no indication of what
types a model supports. Here we give semantic closedness conditions which pos-
tulate the existence of type and term constructors corresponding to common
features of a dependent type theory.

Dependent Functions We say that a CwF C supports dependent functions if
it has:

– For each S ∈ Ty(Γ) and T ∈ Ty(Γ ▷ S), a type Π(S, T) ∈ Ty(Γ);
– For each T ∈ Ty(Γ ▷ S) and t ∈ Ty(T), a term λ(t) ∈ Tm(Π(S, T));
– For each T ∈ Ty(Γ ▷ S), s ∈ Tm(S) and t ∈ Tm(Π(S, T)), a term App(t, s) ∈

Tm(T{⟨id, s⟩});

such that the usual structural substitution rules hold, as well as the β-reduction
equality App(λ(t), s) = t{⟨id, s⟩}. We could impose a version of an η rule, but
this is not required for our results.

Equality A CwF C supports propositional equality types [14] if, for every type
T ∈ Ty(Γ), there exists substitution-stable terms as follows:

– A type Id(T) ∈ Ty(Γ ▷ T ▷ T{p});
– A morphism ReflT : Γ ▷T → Γ ▷T ▷T{p}▷ Id(T), such that p◦Refl = ⟨id, vT ⟩;
– For each S ∈ Ty(Γ ▷ T ▷ T{p} ▷ Id(T)), a function (on sets) JT,S which is in

Tm(T{ReflT })→ Tm(S), where, for any t ∈ Tm(S{ReflT }), J(t){ReflT } = t.

We have analogues of CoverTT terms using substitution. For T ∈ Ty(Γ)
and s, t ∈ Tm(T):

– Id(T, s, t) := Id(T){⟨⟨id, s⟩, t⟩} ∈ Tm(Γ);
– ReflT (t) := v{ReflT ◦ t} ∈ Tm(Id(T){p ◦ ReflT ◦ t}) = Tm(Id(T, t, t)).

We say that a CwF supports extensional equality when Tm(Id(T, s, t)) ̸= ∅
iff s = t, such as in presheaf or set-theoretic models. Note that this condition does
not require CoverTT to soundly model an equality reflection rule. Intensional
equality in CoverTT can be modelled extensionally, so long as one does not
augment CoverTT with axioms like univalence, which are inconsistent with
equality reflection. We focus on extensional models, discussing alternatives in
Section 7.2.

Coverage Semantics for Dependent Pattern Matching 11

Labelled Variants Next we define what it means for a category to support
labelled variants, so that we can interpret datatypes as coproducts of their
constructor types. Labelled variants are simply coproducts with extra structure
to mediate the type-context relationship. Assume:

– a fixed set of type constructors TyCon;
– for each I ∈ TyCon, a set of data constructors DataConI ;
– for each I ∈ TyCon, an object ParamsI ∈ C specifying types of arguments

to the type constructor;
– for each DI ∈ DataConI a type FieldsDI ∈ Ty(ParamsI) specifying the

types of arguments to the data constructor.

The last condition will usually rely on having some sort of dependent pair to
encode multiple fields. Then a CwF supports the labelled variants for I if there
exists some TyConI ∈ Ty(ParamsI), such that for each θ : Γ → ParamsI , there
exists an isomorphism

ι : Γ▷TyConI{θ} ∼=
∐
i

(Γ▷FieldsDI
i
{θ}) s.t. ∀i, pFields

DI
i
{θ}=pTyConI{θ}◦ι

−1◦inji

That is, projecting out the context of from the fields’ type is the same as
converting into TyConI with ι and then projecting the context. Then, for each
t ∈ Tm(FieldsDI

i
{θ}), the arrow ι−1 ◦ inji ◦ t is a section of pTyConI{θ}, and hence

denotes a term in Tm(TyConI{θ}). We call this term DataConDI
i
(t), since it

denotes the ith data constructor applied to field values t.

3.4 Pattern Matching

Here we give a semantic presentation of CoverTT-style pattern matching. In
the CwF framework, we can follow the definition of CoverTT. This serves as
a statement of what we need to define pattern matching semantically. We show
how to fulfill those requirements in Section 4.

Consider a semantic coverage relation ∢whose elements are sets containing
arrows into ∆. We say C supports matching over the semantic coverage ∢if,
for every, ∆ ∈ C, T ∈ Ty(∆), index set I, covering {θi : ∆i → ∆}i ∢∆ for i ∈ I,
branch results ti ∈ Tm(T{θi}) for i ∈ I, and scrutinee θ : Γ → ∆, there exists
a term match−−−−−−→

(∆i,θi,ti)
i(θ) ∈ Tm(T{θ}) such that:

– for any σi : Γ → ∆i, if θ = θi ◦ σi, then match−−−−−−→
(∆i,θi,ti)

i(θ) = ti{σi};
– The above choice commutes with substitution, i.e., for θ1 : Γ1 → Γ2 and

θ2 : Γ2 → ∆, we have match−−−−−−→
(∆i,θi,ti)

i(θ2 ◦ θ1) = (match−−−−−−→
(∆i,θi,ti)

i(θ2)){θ1};

To see this concretely, consider the head function from Section 2.3 in the CwF
structure of CoverTT. The scrutinee type ∆ is ·, (A : U), (n : N), (x : Vec A n).
The cover is the singleton {· #(m+ 1) #Cons m h t reflm+1}, where syntactic
extension # corresponds to ⟨_,_⟩. This pattern corresponds to θ1. The pattern

12 Joseph Eremondi and Ohad Kammar

context ∆1 := ·, (m : N), (h : A), (t : Vec A m), so the pattern in the cover
corresponds to an arrow ·, (m : N), (h : A), (t : Vec A m)→ ·, (A : U), (n : N), (x :
Vec A n). There is one branch, whose result t1 is h : A (which matches the overall
result because the result type is not dependent). Finally, the scrutinees are the
variables · #n #x , which have context-type ∆ in the empty context.

The pattern matching condition says that, if ∢is supported by a model of
CoverTT, and {· #(m+ 1) #Cons m h t reflm+1} ∢∆, then there exists a term
match∆1,θ1,t1 such that, for any m,h, t, applying the substitution yields t, i.e.
[· #(m + 1) #Cons m h t reflm+1/∆]match∆1,θ1,t1 = t. In the case of our term
model, this is given by the pattern match:

case (x : · #n #x : ·, (n′ : N), (x′ : Vec A n′)) to A of {
·, (m : N)(h : A), (t : Vec A m). · #(m+ 1) #Cons m h t reflm+1 ⇒ h}

However, in other models, there may not be an obvious way to form match∆1,θ1,t1 .
We provide a general way of forming such a term in Section 4.

3.5 Model compatibility and soundness

The correspondence between the type formers we have introduced and the con-
structs of CoverTT is fairly direct, but we must account for some technical
details to make the connection formal.

Not every possible syntactic cover of CoverTT leads to a non-trivial model.
For example, if {(x : 0). inl x} ∢(0 + N), then we can write an inhabitant for the
empty type:

bad : 0 := case (inr 3 : (0 + N)) to 0 of {(x : 0). (inl x)⇒ x}

If we have a CwF structure on a category C supporting functions, labelled
variants, and pattern matching in the sense of Section 3.4 with a coverage relation
∢, then we can soundly model CoverTT in C so long as the syntactic ∢is

compatible with the semantic ∢.
In Fig. 4 we define partial translations JΓ K ∈ C, JΓ ⊢ T K ∈ Ty(Γ), JΓ ⊢

t : T K ∈ TmΓ (T). We omit the cases other than pattern matching, as they are
standard. The translation for pattern matches checks if the patterns translate
to a semantic cover, which is well founded because each pattern is syntactically
smaller than the entire match.

We have the following soundness result, characterizing how the syntactic
coverage must correspond to a semantic coverage supporting pattern matching.

Theorem 1 (soundness). If every CoverTT syntactic cover {∆i. si}i ∢Ξ
has J∆iK and JsiK defined, and {JsiK}i ∢JΞK, then J_K is a total mapping on
terms/types/environments/contexts that are well typed with respect to ∢. More-
over, the model is sound with respect to definitional equality.

Proof. If all covers are compatible, then straightforward induction shows that
the undefined case never arises on well-typed terms. The argument follows the
standard CwF model of type theory, except for pattern matching, where the
equations from Section 3.4 directly satisfy EqMatch.

Coverage Semantics for Dependent Pattern Matching 13

J·K = 1 JΓ, (x : T)K = JΓ K ▷ JT K
JΓ ⊢ · ⇒ ·K =!JΓ K : Γ → 1 JΓ ⊢ s # t ⇒ ∆, (x : T)K = ⟨JsK, JtK⟩ : JΓ K → J∆K ▷ JT K

JΓ ⊢ case (tscrut : Ξ) to Tmotive of {
−−−−−−−→
∆i. si ⇒ ti

i
}K

= match−−−−−−−−−−−→
(J∆iK,JsiK,JtiK)

i(JtscrutK) ∈ Tm(T{JtscrutK})

when JtiKare defined for all i and {JsiK}i ∢JΞK

JΓ ⊢ case (tscrut : Ξ) to Tmotive of {
−−−−−−−→
∆i. si ⇒ ti

i
}K undefined otherwise

Fig. 4. Model of Pattern Matching in CoverTT

4 Coverages and Sheaves to Model CoverTT

Theorem 1 lists conditions that ensure we can soundly interpret CoverTT.
What categories and coverages can we find that fulfill our criteria?

In this section we connect some core concepts of sheaf theory to pattern
matching. Specifically, we provide a sufficient condition for when a coverage on
a category C admits semantic pattern matching as in Section 3.4.

4.1 Coverages and Sheaves

Alongside our contribution we provide a brief introduction to sheaves and sites
for completeness. Systematic overviews of sheaves are given, for example, by
Johnstone [15, C2] or MacLane and Moerdijk [17].

Ξj Γi

Ξ ∆

kj

hj fi

g

Coverages and Sites A sheaf-theoretic coverage on a cat-
egory C is, for each ∆ ∈ C, a set of subsets of HomC(_, ∆),
called covers, which fulfill the following closure condition [15,
C2.1.1]: For each cover {fi : Γi → ∆}i∈1...n, and other morphism
g : Ξ → ∆ there exists a Ξ-cover {hj : Ξj → Ξ}j∈1...m such
that, for each j, there exists an fi such g ◦hj lifts along fi. That
is, there exists a kj making the diagram to the right commute.

This condition is weaker than requiring covers to be closed
under pullback by any arrow. In particular, we do not require C to have all
pullbacks. If C does have all pullbacks, one can saturate the coverage so that the
property of being a cover is preserved under pullbacks.

A sheaf-theoretic coverage on C gives a coverage J for each object ∆ ∈ C.
Arrows in a J-cover share a common codomain, so it is clear to which object a
cover belongs. A site (C, J) is a category C equipped with a coverage J .

We refer to “sheaf theoretic coverages” specifically to distinguish them from
coverages in the sense of Sections 2 and 3, i.e. the sets of patterns that we allow.
Both denote the sets of morphisms/patterns that cover a given context, but we
don’t require pattern coverages to fulfill the sheaf-theoretic closure conditions.
In Section 7.2 we show that a constructive syntactic model cannot fulfill them.

14 Joseph Eremondi and Ohad Kammar

Sheaves The next conceptual tools we need are those of a presheaf and a sheaf.
A presheaf P is a functor P : Cop → Set. Sheaf theorists think of presheaves as
abstract collection of functions/terms, with P∆ ∈ Set being the set of functions
out of ∆/terms in context ∆. A sheaf is a collection that ‘thinks’ all pattern
matches over every cover uniquely defines a term. Formulating sheaves precisely
involves multiple nested quantifiers, and we break it down in stages.

For any presheaf P and cover θi : ∆i → ∆ ∈ J , a matching family is a
collection xi ∈ P (∆i) such that for every σ : Ξ → ∆i and σ′ : Ξ → ∆j , if
θi ◦ σ = θj ◦ σ′, then P (σ)(xi) = P (σ′)(xj). I.e., a matching family assigns a P
value for all arrows in a cover, while agreeing in overlapping cases.

An amalgamation of a matching family −→xi
i over θi : ∆i → ∆ ∈ J is an

x ∈ P∆ such that P (θi)(x) = xi, i.e., it is a value in the covered object that is
compatible with the matching family.

A sheaf on (C, J) for a cover θi : ∆i → ∆ ∈ J is a presheaf P such that every
matching family has a unique amalgamation. A presheaf is a J-sheaf, or just a
sheaf, when it is a sheaf for each cover in J . It is in this way that a J-sheaf is a
presheaf that ‘thinks’ all covers admit pattern-matching.

Let y : C → (Cop → Set) denote the Yoneda embedding that maps each
Γ ∈ C to the presheaf HomC(_, Γ). A coverage is subcanonical when for every
∆ ∈ C, y∆ is a sheaf. There is a largest such coverage Jcanonical—the canonical
coverage. We say a cover is canonical when it is in the canonical coverage.
Every representable is a sheaf for a canonical cover, though in Section 7.2 we
disprove the converse: there are models which support pattern matching, so every
representable is a sheaf for each allowed pattern, but where the allowed patterns
do not fulfill the necessary conditions to be a sheaf-theoretic coverage.

4.2 Pattern Matching via Sheaves

The similarity between amalgamation and pattern matching is apparent, and
was informally established by Coquand [9]: since morphisms in C correspond to
substitutions (sequences of terms) in CoverTT, the sheaf condition gives a way
to merge arrows (branches) with the same codomain (return type). However,
to model dependent pattern matching, we need to handle the dependency of
the branch result type on the scrutinee’s value. Thankfully, slices give us the
tools to model type dependency, and sheaf theory lets us convert subcanonical
coverages on a category to coverages on a slice. The key properties, which we
have mechanized in Lean [11], are as follows (see, e.g. Johnstone [15, C2.2.17]):

Theorem 2. (✓lean) If (C, J) is a subcanonical site, then for Γ ∈ C, the site
(C/Γ, JΓ) is subcanonical, where we define {fi : (∆i, θi)→ (Ξ, σ)}i ∈ JΓ if and
only if {fi : ∆i → Ξ}i ∈ J . In particular, if {fi : ∆i → Γ}i is canonical, then
{fi : (∆i, fi)→ (Γ, id)}i is too.

These properties are related to the fundamental theorem of topos theory,
which says that a slice of a sheaf category is equivalent to a category of sheaves
over the slice.

Coverage Semantics for Dependent Pattern Matching 15

We now have what we need to state and prove the main result of this section:
a criterion ensuring that a coverage can model pattern matching. The following
theorem has been mechanized in the Lean 4 theorem prover [11]; work is un-
derway to mechanize the model’s soundness and the coverage building rules of
Section 5.

Theorem 3. (✓lean) Consider a CwF C and, for each ∆ ∈ C, a relation
{θi}i ∢∆ where the θi are disjoint monomorphisms into ∆. If all covers in ∢
are canonical, then C supports pattern matching (in the sense of Section 3.4).

Proof. Let (C, Jcanonical) be a canonical site with a CwF structure and a rela-
tion ∢⊆ Jcanonical. Consider a scrutinee type ∆ : C, dependent result type T ∈
Ty(∆), canonical cover {θi : ∆i → ∆}i ∢∆ of non-overlapping monos, branch re-
sults ti ∈ Tm(T{θi}), and scrutinee θ : Γ → ∆. To construct match−−−−−−→

(∆i,θi,ti)
i(θ) ∈

Tm(T{θ}), we build t′match ∈ Tm∆(T{id}) with which we compose the scrutinee
θ. We will show how the sheaf condition corresponds to the pattern match.

Matches as Arrows Recall from Lemma 1 that there is a Set-isomorphism
Tm∆(T{θ}) ∼= Hom(C/Γ)((∆, θ) , (Γ ▷ T, pT)). To find a term in Tm∆(T{id}),
we use an arrow in Hom(C/∆)((∆, id), (∆ ▷ T, p)) = y(∆ ▷ T, p)(∆, id).

Pattern Sets as Slice Covers The patterns {θi : ∆i → ∆}i correspond to a canon-
ical C-cover by our premise, so by Thm. 2 the cover {θ′i : (∆i, θi)→ (∆, id)}i is
canonical in C/∆.

Branches as Matching Families The branch results of the pattern match form

a matching family for y((Γ ▷ T, p)). Our branches are
−−−−−−−−−−−−−→
ti ∈ Tm∆i

(T{θi})
i
. By

Lem. 1, this family yields a sequence
−−−−−−−−−−−−−−−−−−−−−−−−−−→
xi ∈ Hom(C/∆)((∆i, θi), (∆ ▷ T, p))

i
, i.e.,

−−−−−−−−−−−−−−−−−−−−→
xi ∈ y((∆ ▷ T, p))((∆i, θi))

i
, which is a matching family for the presheaf y(∆ ▷

T, p) and the cover {θi : (∆i, θi)→ (∆, id)}i.

Amalgamating Branches Because the cover is canonical, then y(∆ ▷ T, p) is a
sheaf for it. The sheaf condition states that the above matching family has an
amalgamation x ∈ y(∆ ▷ T, p)(∆, id), such that θi ◦ x = xi. So Lem. 1 yields a
term t′match ∈ Tm(T{id}) such that t′match{θi} = ti.

Equations and the Scrutinee Finally, given a scrutinee θ : Γ → ∆, we choose
t′match{θ} as match−−−−−−→

(∆i,θi,ti)
i(θ) ∈ Tm(T{θ}). It is in TmΓ (T{θ}), so it has the

correct type. It satisfies the requisite equations. Indeed, since t′match{θi} = ti,
whenever θ = θi ◦ σi for some σi, we have t′match{θ} = t′match{θi ◦ σi} =
(t′match{θi}){σi} = ti{σi} just as Section 3.4 requires. For substitution, given
θ = θ2◦θ1, we have t′match{θ2◦θ1} = (t′match{θ2}){θ1} = match−−−−−−→

(∆i,θi,ti)
i(θ2){θ1}.

16 Joseph Eremondi and Ohad Kammar

The above construction lets us model pattern matching for any canonical
cover, where the motive type corresponds to a representable sheaf. If J is sub-
canonical, then every representable is a sheaf, so we can define dependent pat-
tern matching for any motive type. Moreover, the canonical coverage contains
the covers from every subcanonical coverage, so it suffices that each allowed pat-
tern set is a canonical cover. The disjointness and injectivity conditions ensure
that the branches of a match follow the sheaf-theoretic definition of a matching
family. One could instead require that branches agree on their overlap [7], which
is suited to matching on real numbers [25].

We conclude this section by recalling a property characterizing subcanonical
covers [15, C2.1.11], which we will utilize in Section 5.

Theorem 4. A set of arrows {θi : Ui → U}i is canonical for C if and only if,
for every σ : V → U and every object T ∈ C, the presheaf y(T) is a sheaf for the
pulled back family {σ∗θi : σ

∗Ui → V }i.

We can use this theorem to form basic subcanonical coverages. To build new
coverages from old ones, we employ saturation conditions: operations on cov-
erages which do not change which presheaves are sheaves for that coverage. This
is of interest to us because the canonical coverage is invariant under every satu-
ration: it is already the largest possible subcanonical coverage, so no covers can
be added without changing its notion of sheaf. The next section gives several
examples of useful saturation conditions.

5 Tools for Building Coverages

In this section, we take the abstract canonicity condition and derive concrete
rules for forming canonical covers. This section justifies the idea that CoverTT
can begin with a basic set of covers for each type and obtain a language of
patterns by allowing nesting, variables, and multiple scrutinees. We provide base
coverages, along with composition rules for building complex coverages from
simpler ones. This recreates commonly supported features of dependent pattern
matching: variables, constructors for labelled variants, pruning absurd branches,
and matching on refl with inaccessible (dot) patterns. In Section 7.2 we discuss
potential novel coverages that can be supported using coverage semantics.

5.1 Identity and Isomorphism

The most basic canonical covers are singletons consisting of an isomorphism. If
two contexts are isomorphic, then moving from one to the other covers all cases.

Lemma 2. A presheaf is a sheaf for a singleton cover containing an isomor-
phism ι : Γ ∼= ∆, so every isomorphism is a canonical singleton cover. 3

3 In a category with pullbacks, sheaves may be defined for Grothendieck pretopologies,
in which all isomorphisms definitionally yield singleton covers.

Coverage Semantics for Dependent Pattern Matching 17

As a consequence, identity arrows are in singleton canonical covers:

Corollary 1. The singleton cover {id : Γ → Γ} is canonical for any category,
so a pattern consisting entirely of variables x1, x2, . . . xn can be safely included
in any coverage for CoverTT.

Supporting identity arrows is the bare minimum we need for pattern match-
ing. They are the base case out of which other patterns are built, where no
discrimination or computation happens at all. Likewise, a catch-all pattern, com-
monly written as an underscore ‘_’, is just an unnamed variable that does not
occur in the right-hand side of the branch.

More generally, the canonical coverage contains all isomorphisms. So we can
devise a sound semantics for CoverTT where any isomorphism is a valid cover of
a type. This allows for operations such as rearranging variables in a dependency-
respecting way or re-bracketing nested sums and products.

Functions written by the programmer can even be used as patterns if they
are isomorphisms, opening the door for user-defined views into a type. Of course,
the existence of a sound semantics does not guarantee a language we can actually
implement. Checking whether a term is a definitional isomorphism is undecidable
without being explicitly given its inverse. Moreover, depending on how exten-
sional the model is, there may be terms that are isomorphisms in the model, but
are not definitional isomorphisms in CoverTT.

5.2 Coproducts and Wadler Views

With variables as patterns, the next primitive patterns we need are constructors
for a datatype. As we saw in Section 3.3, one way to model datatypes is with
labelled variants. So if C has coproducts, we can model datatype constructors
as injections into a coproduct context, and we can amalgamate branches that
match on all the constructors of a datatype using the universal property of a
coproduct.

Labelled variants are only coproducts up to isomorphism, but we have seen
that isomorphisms are always singleton covers, and below in Section 5.3 we see
that composition preserves canonical covers. So it suffices to consider coproducts
directly. Unfortunately, in an arbitrary category, coproduct injections are not
guaranteed to form a canonical cover. Thm. 4 requires each representable to
be a sheaf for the pullback of every cover, so we need coproducts to be stable
under pullback, i.e. the pullback of a coproduct is the coproduct of pullbacks.
Thankfully, pullback stability of coproducts holds if C is Set, a presheaf category,
a topos, or any other locally cartesian closed category (LCCC). We already want
C to be LCCC in order to support dependent functions.

Theorem 5. Suppose C has all pullbacks and that coproducts are disjoint and
stable under pullback. Then {injj : ∆i →

∐
i∈I ∆i}j canonically cover

∐
i∈I ∆i.

The immediate result of this theorem is that for every inductive type, the
constructors are covering for that type, so long as the inductive type is modelled

18 Joseph Eremondi and Ohad Kammar

as the labelled variants of its constructor types. However, it is important to real-
ize that this theorem applies for any decomposition of a type into the coproduct
of other types, regardless of whether the injections correspond to constructors
or not. Such a coverage introduces the possibility for views as introduced by
Wadler [27], which act as first class pattern synonyms:

Corollary 2. Consider a finite I : U, a family S : I → U and an indexed
function f : (i : I)→ S i→ T in CoverTT. Suppose we have a category C with
a CwF model of CoverTT supporting pattern matching as in Section 3.4 over
a coverage _ ∢_. If JT K ∼= JΣ(t : T)(i : I)(s : S i). t =T f i s)K, then there is
also a model of CoverTT with coverage (_ ∢_ ∪ {f i}i)

That is, if T is isomorphic to the sum of some types S i over finite i, we can
safely match on a value from T , where the ith pattern is the S i value that it
corresponds to, regardless of whether T is defined as an inductive type or the
S i are its constructor types.

5.3 Nesting and Composition

With variables and constructors as primitive covers, we now need a way to
combine them to build more complex covers. Adding the composition of different
coverages does not change their sheaves. Every cover has the same sheaves as
the sieve it generates, i.e., the closure of the cover under precomposition with
any arrow in C [15, C2.1.3]. So canonical covers are closed under composition:

Theorem 6. For a cover J of C, If {fi : ∆i → ∆}i ∈ J , and for each i, we have
{gij : ∆ij → ∆i}ij ∈ J , then the sheaves of (C, J) are identical to the sheaves of
(C, J ∪ {fi ◦ gij : ∆ij → ∆}i). So if {fi : ∆i → ∆}i is canonical, and for each i,
{gij : ∆ij → ∆i}ij is canonical, then {fi ◦ gij : ∆ij → ∆}ij is canonical.

This allows patterns to be nested: if {fi}i are covering for ∆, and for each
set of variables in those covering patterns, {gij}ij is covering, then we can case
split each variable in the fi into j cases corresponding to the gij patterns, and
the entire resulting set can still be covering. This property gives semantic justi-
fication for the case-split operation of the Agda and Idris editor modes, where
the programmer selects a variable in a pattern match, and the pattern contain-
ing the variable is replaced by the sequence of patterns that has each possible
constructor application in place of the variable.

When we combine the closure of the canonical coverage under identity (iso-
morphisms), sum injections, and composition, we can recreate dependent pattern
matching on non-indexed datatypes. However, we see in the next sections that
the language of coverages also gives us the tools to handle indexing.

5.4 Pruning Absurd Contexts

If we allow ourselves some extensionality, then we can use sheaves to model
absurd branches and empty cases. Suppose that C has an initial object 0, with

Coverage Semantics for Dependent Pattern Matching 19

a unique arrow 0Γ : 0→ Γ for every Γ . The initial context denotes an empty or
absurd context, since we can derive a term of any type from it. It turns out that
we do not ever need to include branches for patterns whose contexts are empty.
If we can amalgamate for a cover where one pattern has an empty context, we
can amalgamate for the same cover with that arrow deleted, since any matching
family for the smaller cover can be turned into one for the larger cover by adding
the unique arrow out of the initial context.

Theorem 7. Let c be a canonical cover with θ : ∆ → Γ ∈ c. If there exists an
arrow ι : ∆→ 0, then c \ {θ} is canonical.

This property mirrors how Agda and Idris allow for the omission of empty
cases. In some cases, these languages only allow branch right-hand sides to be
removed after the programmer specifies an empty pattern, marking which part of
the scrutinee has an impossible type. We view this empty pattern as a syntactic
aid to tell the type checker when a context is isomorphic to the initial context,
so we do not directly model the empty pattern.

Like our assumption about equality, the condition of having a (strong) initial
object does not hold in the term model, since not all eliminations of the empty
type are definitionally equal. So long as CoverTT does not contain any axioms
that specifically distinguish empty eliminations, our model is still sound.

5.5 Propositional Equality

Since isomorphisms are always canonical singleton covers (Lem. 2), we can create
a coverage for a sufficiently-extensional equality type.

Corollary 3. If ⟨v, ⟨v,ReflA⟩⟩ : Γ ▷ A→ Γ ▷ A ▷ A{p} ▷ Id(A{p2}, v, v{p}) is an
isomorphism, then {⟨v, ⟨v,ReflA⟩⟩} is canonical.

In more readable, non CwF notation: if A is isomorphic to Σ(x : A)(y : A). x =A

y in the model via the projections, then {(x, x, reflx)} can be a singleton cover
for Σ(x : A)(y : A). x =A y. Such an isomorphism holds if C has extensional
equality, since it asserts that there is a unique, internally constructible proof of
equality between two equal terms.

For a dependent match targeting (x :A), (y :A), (pf :x=A y) ⊢ P (x, y, pf) :U,
the above cover only requires we provide a branch result with type P (x, x,ReflA).
The variable y was replaced by x in the goal type. This captures “inaccessible” or
“forced” patterns [22], known as dot-patterns in Agda and Idris. By matching on
the propositional equality, we work with refined information about the context.
Here, we match y against the variable x rather than a constructor. No branching
or discrimination happening, since the cover is a singleton. Rather, x is the
only possible value for y given the equality proof. Agda writes .x to express
this pattern. Section 5.6 extends this to equality proof between arbitrary terms,
rather than variables.

20 Joseph Eremondi and Ohad Kammar

5.6 Pullbacks and Unification

We have seen that the canonical coverage includes isomorphisms and injections
and that it allows for composition. However, the definition of a sheaf-theoretic
coverage enables stability under pullback: for any coverage, a sheaf for that
coverage is still a sheaf if we add the pullback of any cover by any arrow. Closure
under pullback is the key condition that separates a coverage from a set of arrows.
The definition in Section 4.1 is presented in the style of Johnstone [15, C2], in
a general way that does not assume the existence of pullbacks. However, when
each arrow in a cover has a pullback along some morphism, we get the following
saturation condition:

Theorem 8. For a cover J of C, if {θi : ∆i → ∆}i ∈ J , and g : Γ → ∆, where
the pullback of each θi along g exists, then J∪{{g∗θi : g∗∆i → Γ}i} has the same
sheaves as J . So if {θi : ∆i → ∆}i is canonical, then so is {g∗θi : g∗∆i → Γ}i.

This abstract property, known as stability under base change, can be
exploited to build interesting covers.

Context Extension Base change lets us add new scrutinees to a pattern match.
In any CwF, for θ : Γ → ∆ and T ∈ Ty(∆), pulling back by p : ∆▷T → ∆ yields
a morphism ⟨θ ◦p, v⟩ : Γ ▷T{θ} → ∆▷T [14]. Combining this with Thm. 8 gives:

Theorem 9. For canonical {θi : ∆i → ∆}i and a type T ∈ Ty(∆), there is also
a canonical cover {⟨θi ◦ p, v⟩ : ∆i ▷ T{θi} → ∆ ▷ T}i.

So we can build a covering pattern for a context ∆ and immediately obtain
a covering context on ∆ ▷ T by appending a new variable v ∈ Tm(T{θi}) to
each pattern in the cover. In a dependent match the new variable might have
a different type in each branch: T may be indexed by variables in ∆, but each
θi is a value for ∆ with variables from ∆i. Further case-splitting on the newly
introduced variable can be achieved using composition à la Section 5.3.

Matching on Equality Suppose that for some Γ ∈ C and T ∈ Ty(Γ), and
that: {ReflT : Γ ▷ T → Γ ▷ T ▷ T{p} ▷ Id(T{p2}, v, v{p})} is canonical. As in Sec-
tion 5.5, such a property holds for an extensional model. With such a cover on
equality, we can apply the base change theorem, the CwF laws, and the proper-
ties of equality (Section 3.3) to obtain a cover on contexts containing equalities
by matching:

Theorem 10. Suppose C has all pullbacks. Consider Γ ∈ C with T ∈ Ty(Γ),
t1, t2 ∈ Tm(T). Then pulling back ReflT by ⟨⟨t1{p}, t2{p}⟩, v⟩ yield a context
∆ and an arrow ⟨θ,ReflT (t12)⟩, where θ : ∆ → Γ , t12 ∈ Tm(T{θ}), and
t1{θ} = t2{θ} = t12. Moreover, if {ReflT } is canonical, then so is the cover
{⟨θ,ReflT (t12)⟩ : ∆→ Γ ▷ Id(T, t1, t2)}.

Coverage Semantics for Dependent Pattern Matching 21

∆ Γ, (x : T)

Γ, (pf :x=T y) Γ, (x :T), (y :T), (x=T y)

θ # reflt12

θ # t12

(x # x # reflx)

(t1 # t2 # s)

For the intuition behind this,
consider the pullback square to
the right, translated to CoverTT-
style notation for clarity. First,
because the square commutes,
we know that θ is a substitu-
tion that equates (t1, t2, pf) and
(x, x, reflx), i.e., it is a unifier of t1 and t2. Since a pullback is a limit, it is
universal, so any other unifiers for t1 and t2 necessarily factor through θ. Thus,
it is the most general unifier for t1 and t2. This is precisely what the usual
rule for pattern matching on equality uses: it unifies the two sides of the equality,
treating syntactic variables as unification variables, and generates a substitution
that is then applied to the goal. The context ∆ consists of the variables that were
in common between t1 and t2 which remain free in the unification t12. In the
case that t1 and t2 do not unify, then the pullback is an arrow out of an initial
context, and the branch can be omitted completely (because absurd covers can
be omitted, as in Section 5.4).

6 Example: Folding Without a Starting Value

We now have specified everything we need (sans recursion) for feature-parity
with the original presentation of dependent pattern matching by Coquand [9].
Our sheaf-centric view generalizes the elaboration process of Goguen et al. [12],
but directly within the model instead of as a syntactic elaboration. Constructors
for a coproduct form a cover and variables form a singleton cover, acting as the
basis from which other covers are generated. Covers can be composed, extended,
refined by matching on an equality, or pared down by pruning absurd branches.
Indexed data types can be handled using fording and matching on equality.

To see a non-trivial example of how to build a cover in the canonical coverage,
consider the foldr1 function found in the Agda standard library [10].

foldr1 : (A→ A→ A)→ VecA (sucn)→ A

foldr1 f (consx nil) = x | foldr1 f (consx (cons y ys) = f x (foldr1 f (cons y ys))

Because the argument vector has length at least one, the case for nil can be
omitted. The base case is then a vector of length one, and the inductive case is
a vector of length two or more.

Assume an extensional CwF model of CoverTT in a LCCC C where induc-
tive types are labelled variants. We show how the patterns for foldr1 are in the
canonical coverage for C, and hence foldr1 can be modelled. Note that because
labelled variants are defined in terms of isomorphism, we do not preclude initial
algebra semantics for modelling the self-reference part of inductive types.

6.1 Translating to CoverTT

First, we translate the function to CoverTT-style by making the length argu-
ment explicit and replacing the indexed constructors with ones taking explicit

22 Joseph Eremondi and Ohad Kammar

equality proofs. The datatype becomes:

data Vec (A : U) : (n : N)→ U where

nil : (n = 0)→ Vec A n

cons : (m : N)→ A→ Vec A m→ n = m+ 1→ Vec A n.

We also abstract out the recursive calls, since we have not included them in
CoverTT and have not required that our model category C support them.
Despite using recursion, foldr1 is an ideal example because it is not contrived,
and uses all the main saturation conditions we developed in Section 5. Since
foldr1 is decreasing in the length of the lists, its recursion can be modelled with
well-known techniques orthogonal to our contribution.

foldr1 : (n : N)→ (A→ A→ A)→ VecA (sucn)

→ (self : (A→ A→ A)→ VecA (sucn)→ A)→ A

foldr1 0 f (cons 0x (nil Refl)Refl) self = x

foldr1 (m+ 1) f (cons (m+ 1)x (consmy ysRefl) self

= f x (self f (cons y ysRefl)Refl)

6.2 Building the Coverage

Using CoverTT notation rather than CwF notation for clarity and space rea-
sons, we now show how the rules of Section 5 can be used to build a cover:

{((m+ 1) f (cons (m+ 1) x (nil Refl) Refl) self),

((m+ 1) f (cons (m+ 1) x (cons m y ys Refl) Refl) self)}
∢(n : N), (f : A→ A→ A), (v : Vec A (suc n)), (self : . . .)

– Identity (Cor. 1) has variables (n)(f)(v)(self) covering the scrutinee type;
– Coproduct (Cor. 2) has {(nil eqnil), (consm′ xxs eqcons)} ∢VecA q for any q;
– Composition (Thm. 6) allows us to construct the canonical cover
{(n f (nil eqnil) self), (n f (consm′ xxs eqcons) self)};

– We have eqnil : n + 1 = 0, but this type is empty, so applying the absurd
rule (Thm. 7) gives a singleton cover {(n f (consm′ xxs eqcons) self)};

– eqcons : n + 1 = m′ + 1, so we get a pullback substitution mapping m′

to n and all other variables to themselves. Applying the Refl rule (Cor. 3),
nnRefl is a cover of (m′ : N) ▷ (n : N) ▷ (n+ 1 = m′ + 1). By composition,
the scrutinee context has singleton cover {(n f (consnxxsRefl) self)} in the
canonical coverage;

– The coproduct property for Vec and composition yield a cover
{(n f (consnx (nil eqnil)Refl) self), (n f (consnx (consmy ys eqcons)Refl) self)};

– Finally, since eqnil : n = 0 and eqcons : n = m+1, we apply the Refl rule for
each proof, along with composition, to obtain the desired cover above.

Then, we can use the sheaf condition model how f x (self f (cons y ys Refl) Refl)
and x are amalgamated into a denotation for the entire function.

Coverage Semantics for Dependent Pattern Matching 23

7 Discussion

7.1 Related Work

Dependent pattern matching was first proposed by Coquand [9]. While this work
contains no explicit mentions of sheaf theory, it originated the idea that patterns
could be thought of in terms of coverings and partitions of a space, which greatly
inspired our work. The theory and practice of both pattern matching and elim-
inators foundational developments in proof assistants: McBride [19] developed
elimination for Lego, and later Epigram [20]. This was extended to views and
with-clauses by Mcbride and Mckinna [21].

Goguen et al. [12] show how pattern matching can be elaborated to primitive
eliminators, and hence given semantics in any model that had semantics for
eliminators. These are in turn given semantics using initial algebras [1, 2]. Cockx
et al. [6] extend this to work with univalent theories. Elaboration is similar to
amalgamation using the sheaf condition, but amalgamation occurs strictly in
the model. Elaborating to eliminators also handles recursion, which is not yet
explicitly included in our sheaf semantics.

To our knowledge, the first explicit connection between the sheaves and pat-
tern matching was by Sherman et al. [25], which gave a framework for pattern-
matching on real numbers using topological spaces. The thesis version of this
work [24] generalizes the approach from topological spaces to Grothendieck
topologies. Cockx et al. [7] give similar semantics to overlapping patterns by
treating them as definitional equalities, using confluence rather than sheaves.
Using equalizers or pullbacks to represent unification was originated by Ryde-
heard and Burstall [23], as well as Goguen [13].

7.2 Future Work

First-Class Pattern Synonyms An immediate application of this work would
be to implement an enhanced version of pattern synonyms in a language like
Agda. Currently, Agda lets the programmer declare pattern synonyms, but each
name must map to a syntactic pattern i.e., a set of nested constructor applica-
tions. Agda checks if a definition is covering by elaborating to these patterns.
Our framework could be used to build direct coverage checking for pattern syn-
onyms, so the programmer could build their own alternate, extensible covers of
a type, using sheaf theory to justify their coverage. This would provide direct se-
mantics for the user-defined views of Wadler [27] and Mcbride and Mckinna [21].
Further research is needed to extract a constructive procedure for amalgamating
branches that can be implemented in practice.

Overlapping Pattern Matches Our semantics require non-overlapping, in-
jective patterns, but our framework suggests a way to lift this restriction. Recall
that the sheaf condition only requires that a matching family agrees on the
overlap between covering patterns. This suggests two ways to give semantics
to overlapping patterns: by ensuring that the right-hand sides of each pattern

24 Joseph Eremondi and Ohad Kammar

match agree on the overlap of their left-hand sides, or by adding information to
each pattern to ensure they are actually non-overlapping.

The latter approach matches current implementations: catch-all patterns are
elaborated into multiple branches whose left-hand patterns are the constructors
that have not yet been used. Unfortunately, to prove anything about a function
defined this way, the programmer needs a proof case for each branch in the
elaboration, even if they correspond to a single branch in the function as written.
Our framework may support canonical covers which contain extra information
preventing overlap, such as proofs that previous branches had not matched.
These could be used to develop covers for matches with overlapping patterns
that do not require creating additional cases during elaboration, enabling more
succinct proofs about overlapping cases.

Inductive Datatypes and Termination Checking When patterns are not
restricted to constructors, it is not immediately apparent which recursive pattern
matching functions can be soundly modelled, since pattern variables may not be
structurally smaller than the patterns in which they occur. Further study is
needed to devise criteria for which recursive definitions are well founded with
non-constructor patterns.

Beyond Top-Level Matches Our semantics only support top level pattern
matches. Many of the results we used, such as the fundamental theorem of topos
theory, are well suited to top-level matches but do not directly translate to terms
in an arbitrary context. Additionally, if the scrutinee type of a pattern match is in
a non-empty context, then matching affects not only the motive, but may refine
the values or types of variables in the context on the left. These technical issues
suggest a semantic theory of telescopes, which are objects representing extensions
to a given context by some number of types, and environments, which extend
substitutions by some number of terms.

With Clauses Our approach to matching on equality proofs gives an intuition
for modelling Agda-style with-clauses and views [21], though a full account is
beyond the scope of this paper. Suppose we are defining a pattern match with
scrutinees of type ∆ and result type ∆ ⊢ T : U, and we want to match on some
intermediate expression ∆ ⊢ s : S. There is an isomorphism ι : ∆ ∼= ∆, (x :
S), (pf : x =S s). So if we have a cover of {si : ∆i → ∆}i to match s against, we
can use composition and extension to obtain a cover {si : ∆, (pf : si = s)→ ∆}i.
In the case that si and s unify, the Refl rule from above can be used to match on
the equality, and in an extensional model, the goal type can be safely rewritten
due to the existence of the equality proof.

Intensional Models Our current approach relies on extensional models, where
equality proofs correspond with equality in the model. We can define models of
CoverTT in terms of canonical coverages and non-syntactic equality, and we

Coverage Semantics for Dependent Pattern Matching 25

can give a CwF term model for CoverTT because syntactic pattern matching
fulfills the criteria of Section 3.4, but the term model for CoverTT cannot be
described in terms of sheaf-theoretic coverages.

To show the issue, we show that {true, false} is not a canonical cover of Bool
for the CwF given by well-typed CoverTT terms quotiented by definitional
equality. Consider a function haltsInN : SyntaxTree → N → Bool, that looks
at a syntax tree of an untyped lambda calculus term and checks whether it
halts in n or fewer steps. Consider also Ω : SyntaxTree, a representation of
(λx. x x)(λx. x x). If {true, false} is a canonical cover, it is also a sieve in the
canonical topology [15, C2.1.8], so pulling the sieve back by haltsInN Ω produces
the set of arrows {hj◦!Vj

: Vj → N | hj : 1→ N}. This contains each arrow in
1→ N, i.e., each natural number. For the cover to be canonical, for any type T
there must be a way to amalgamate {tj : T | hj : 1→ N} into N→ T . Then all
set-theoretic infinite sequences of natural numbers could be amalgamated into
type-theoretic functions N→ N, which is impossible.

The above example relies on the existence of an infinite cover. While infinite
covers are allowed in sheaf theory, they do not correspond directly to pattern
matches that a programmer can write down. So further exploration of finite and
infinite covers may resolve the issue.

Another issue is that extensional models typically imply that all equality
proofs of a given type are equal. As such our approach is incompatible with
univalent theories like Homotopy or Cubical Type Theory [26, 8]. Both of these
issues might be addressed by replacing sheaves with stacks or, even more gener-
ally, ∞-stacks [16]. These replace the strict equality of the sheaf condition with
higher structure. However, the technical and theoretical overhead of switching
to stacks is considerable, and utilizing them for pattern matching will be a sig-
nificant undertaking.

Toposes and Quasi-toposes Apart from pattern matching, the theory of
sheaves plays a central role in categorical logic, since categories of sheaves over
a coverage form Grothendieck toposes, which serve as models of constructive
logic. Quasi-toposes relax the sheaf conditions to only require uniqueness of
amalgamations. Future work should search for deeper connections to toposes or
quasi-toposes. Two-level type theories [3] may yield some answers, since they
describe the interactions between a model of a type theory and the category of
presheaves over that model.

7.3 Conclusion

This work formalizes the connection between dependent pattern matching and
the notion of sheaves over a site. We have provided a framework which is ex-
pressive enough to capture the semantics of current pattern matching imple-
mentations, while laying the groundwork for future enhancements. Our work
demonstrates that elaboration to eliminators is not the only feasible semantics
for dependent pattern matching, and that there is perspective to be gained from
treating pattern matching as a core feature and using the lens of sheaf theory.

Bibliography

[1] Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing strictly
positive types. Theor. Comput. Sci. 342(1), 3–27 (2005), ISSN 0304-3975,
https://doi.org/10.1016/j.tcs.2005.06.002

[2] Altenkirch, T., Ghani, N., Hancock, P., Mcbride, C., Morris, P.: Indexed
containers. J. Funct. Program. 25, e5 (Jan 2015), ISSN 0956-7968, 1469-
7653, https://doi.org/10.1017/S095679681500009X

[3] Annenkov, D., Capriotti, P., Kraus, N., Sattler, C.: Two-level type theory
and applications. Math. Struct. Comput. Sci. 33(8), 688–743 (Sep 2023),
ISSN 0960-1295, 1469-8072, https://doi.org/10.1017/S0960129523000130

[4] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Devel-
opment. Springer-Verlag (2004)

[5] Brady, E.: Idris 2: Quantitative Type Theory in Practice. In: 35th Eur.
Conf. Object-Oriented Program. ECOOP 2021, Schloss Dagstuhl – Leibniz-
Zentrum für Informatik (2021), https://doi.org/10.4230/LIPIcs.ECOOP.
2021.9

[6] Cockx, J., Devriese, D., Piessens, F.: Pattern matching without K. In: Proc.
19th ACM SIGPLAN Int. Conf. Funct. Program., pp. 257–268, ICFP ’14,
ACM, New York, NY, USA (2014), ISBN 978-1-4503-2873-9, https://doi.
org/10.1145/2628136.2628139

[7] Cockx, J., Piessens, F., Devriese, D.: Overlapping and Order-Independent
Patterns. In: Shao, Z. (ed.) Program. Lang. Syst., pp. 87–106, Springer,
Berlin, Heidelberg (2014), ISBN 978-3-642-54833-8, https://doi.org/10.
1007/978-3-642-54833-8_6

[8] Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: A
constructive interpretation of the univalence axiom. In: Uustalu, T. (ed.)
21st Int. Conf. Types Proofs Programs TYPES 2015, Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 69, pp. 5:1–5:34, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018),
ISBN 978-3-95977-030-9, ISSN 1868-8969, https://doi.org/10.4230/LIPIcs.
TYPES.2015.5

[9] Coquand, T.: Pattern matching with dependent types. In: Informal Proc.
Log. Framew., vol. 92, pp. 66–79 (1992)

[10] Documentation for Agda: Data.Vec.Base. https://github.com/agda/
agda-stdlib/blob/196766082e913de0d7cd98e3b672935a3b4528b8/src/
Data/Vec/Base.agda (2024)

[11] Eremondi, J.: Joeyeremondi/lean-cwf: Lean proof for esop 2025 "coverage
semantics for dependent pattern matching" (Jan 2025), https://doi.org/10.
5281/zenodo.14768609, URL https://doi.org/10.5281/zenodo.14768609

[12] Goguen, H., McBride, C., McKinna, J.: Eliminating dependent pattern
matching. In: Futatsugi, K., Jouannaud, J.P., Meseguer, J. (eds.) Alge-
bra, Meaning, and Computation: Essays Dedicated to Joseph A. Goguen

https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S0960129523000130
https://doi.org/10.1017/S0960129523000130
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1145/2628136.2628139
https://doi.org/10.1145/2628136.2628139
https://doi.org/10.1145/2628136.2628139
https://doi.org/10.1145/2628136.2628139
https://doi.org/10.1007/978-3-642-54833-8_6
https://doi.org/10.1007/978-3-642-54833-8_6
https://doi.org/10.1007/978-3-642-54833-8_6
https://doi.org/10.1007/978-3-642-54833-8_6
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://github.com/agda/agda-stdlib/blob/196766082e913de0d7cd98e3b672935a3b4528b8/src/Data/Vec/Base.agda
https://github.com/agda/agda-stdlib/blob/196766082e913de0d7cd98e3b672935a3b4528b8/src/Data/Vec/Base.agda
https://github.com/agda/agda-stdlib/blob/196766082e913de0d7cd98e3b672935a3b4528b8/src/Data/Vec/Base.agda
https://doi.org/10.5281/zenodo.14768609
https://doi.org/10.5281/zenodo.14768609
https://doi.org/10.5281/zenodo.14768609
https://doi.org/10.5281/zenodo.14768609
https://doi.org/10.5281/zenodo.14768609

Coverage Semantics for Dependent Pattern Matching 27

on the Occasion of His 65th Birthday, pp. 521–540, Springer Berlin Heidel-
berg, Berlin, Heidelberg (2006), ISBN 978-3-540-35464-2, https://doi.org/
10.1007/11780274_27

[13] Goguen, J.A.: What is unification?: A categorical view of substitution, equa-
tion and solution. In: Algebraic Techniques, pp. 217–261, Elsevier (1989)

[14] Hofmann, M.: Syntax and Semantics of Dependent Types. In: Pitts,
A.M., Dybjer, P. (eds.) Semantics and Logics of Computation, pp.
79–130, Publications of the Newton Institute, Cambridge University
Press, Cambridge (1997), ISBN 978-0-521-58057-1, https://doi.org/10.
1017/CBO9780511526619.004

[15] Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium.
Oxford Logic Guides, Oxford University Press, Oxford, New York (Jul
2003), ISBN 978-0-19-852496-0

[16] Lurie, J.: Higher Topos Theory. No. no. 170 in Annals of Mathematics
Studies, Princeton University Press, Princeton, N.J (2009), ISBN 978-0-
691-14048-3 978-0-691-14049-0

[17] MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First In-
troduction to Topos Theory. Springer, New York, NY, UNITED STATES
(1992), ISBN 978-1-4612-0927-0

[18] McBride, C.: Dependently Typed Functional Programs and Their Proofs.
Ph.D. thesis, University of Edinburgh, UK (2000)

[19] McBride, C.: Elimination with a Motive. In: Callaghan, P., Luo, Z., McK-
inna, J., Pollack, R., Pollack, R. (eds.) Types Proofs Programs, pp. 197–216,
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2002),
ISBN 978-3-540-45842-5, https://doi.org/10.1007/3-540-45842-5_13

[20] McBride, C.: Epigram: Practical Programming with Dependent Types.
In: Vene, V., Uustalu, T. (eds.) Adv. Funct. Program., pp. 130–170,
Springer, Berlin, Heidelberg (2005), ISBN 978-3-540-31872-9, https://doi.
org/10.1007/11546382_3

[21] Mcbride, C., Mckinna, J.: The view from the left. J. Funct. Prog. 14(1),
69–111 (Jan 2004), ISSN 0956-7968, 1469-7653, https://doi.org/10.1017/
S0956796803004829

[22] Norell, U.: Dependently typed programming in Agda. In: Proc. 4th Int.
Workshop Types Lang. Des. Implement., pp. 1–2, TLDI ’09, ACM, New
York, NY, USA (2009), ISBN 978-1-60558-420-1, https://doi.org/10.1145/
1481861.1481862

[23] Rydeheard, D.E., Burstall, R.M.: Computational category theory. Prentice
Hall International (UK) Ltd., GBR (1988), ISBN 0131627368

[24] Sherman, B.: Making Discrete Decisions Based on Continuous Values. Mas-
ter of Science, Massachusetts Institute of Technology (2017)

[25] Sherman, B., Sciarappa, L., Chlipala, A., Carbin, M.: Computable decision
making on the reals and other spaces: Via partiality and nondeterminism.
In: Proc. 33rd Annu. ACMIEEE Symp. Log. Comput. Sci., pp. 859–868,
ACM, Oxford United Kingdom (Jul 2018), ISBN 978-1-4503-5583-4, https:
//doi.org/10.1145/3209108.3209193

https://doi.org/10.1007/11780274_27
https://doi.org/10.1007/11780274_27
https://doi.org/10.1007/11780274_27
https://doi.org/10.1007/11780274_27
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1017/CBO9780511526619.004
https://doi.org/10.1007/3-540-45842-5_13
https://doi.org/10.1007/3-540-45842-5_13
https://doi.org/10.1007/11546382_3
https://doi.org/10.1007/11546382_3
https://doi.org/10.1007/11546382_3
https://doi.org/10.1007/11546382_3
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1017/S0956796803004829
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1145/3209108.3209193
https://doi.org/10.1145/3209108.3209193
https://doi.org/10.1145/3209108.3209193
https://doi.org/10.1145/3209108.3209193

28 Joseph Eremondi and Ohad Kammar

[26] Univalent Foundations Program, T.: Homotopy Type Theory: Univalent
Foundations of Mathematics. https://homotopytypetheory.org/book, Insti-
tute for Advanced Study (2013)

[27] Wadler, P.: Views: A way for pattern matching to cohabit with data
abstraction. In: Proc. 14th ACM SIGACT-SIGPLAN Symp. Princ. Pro-
gram. Lang., pp. 307–313, POPL ’87, Association for Computing Ma-
chinery, New York, NY, USA (Oct 1987), ISBN 978-0-89791-215-0, https:
//doi.org/10.1145/41625.41653

https://doi.org/10.1145/41625.41653
https://doi.org/10.1145/41625.41653
https://doi.org/10.1145/41625.41653
https://doi.org/10.1145/41625.41653

	Coverage Semantics for Dependent Pattern Matching

