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Abstract

We present a general theory of Gifford-style type and effect anno-
tations, where effect annotations are sets of effects. Generality is
achieved by recourse to the theory of algebraic effects, a develop-
ment of Moggi’s monadic theory of computational effects that em-
phasises the operations causing the effects at hand and their equa-
tional theory. The key observation is that annotation effects can be
identified with operation symbols.

We develop an annotated version of Levy’s Call-by-Push-Value
language with a kind of computations for every effect set; it can
be thought of as a sequential, annotated intermediate language.
We develop a range of validated optimisations (i.e., equivalences),
generalising many existing ones and adding new ones. We classify
these optimisations as structural, algebraic, or abstract: structural
optimisations always hold; algebraic ones depend on the effect
theory at hand; and abstract ones depend on the global nature of
that theory (we give modularly-checkable sufficient conditions for
their validity).

Categories and Subject Descriptors D.3.4 [Processors]: Compil-
ers; Optimization; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Logics of programs; F.3.2 [Semantics of Pro-
gramming Languages]: Algebraic approaches to semantics; Deno-
tational semantics; Program analysis; F.3.3 [Studies of Program
Constructs]: Type structure

General Terms Languages, Theory.

Keywords Call-by-Push-Value, algebraic theory of effects, code
transformations, compiler optimisations, computational effects, de-
notational semantics, domain theory, inequational logic, relevant
and affine monads, sum and tensor, type and effect systems, uni-
versal algebra.

1. Introduction

In Gifford-style type and effect analysis [27], each term of a pro-
gramming language is assigned a type and an effect set. The type
describes the values the term may evaluate to; the effect set de-
scribes the effects the term may cause during its computation, such
as memory assignment, exception raising, or I/O.

For example, consider the following term M :

if true then x := 1 else x := deref(y)

[Copyright notice will appear here once ’preprint’ option is removed.]

It has unit type 1 as its sole purpose is to cause side effects;
it has effect set {update, lookup}, as it might cause memory
updates or look-ups. Type and effect systems commonly convey
this information via a type and effect judgement:

x : Loc, y : Loc ⊢M : 1 ! {update, lookup}

The information gathered by such effect analyses can be used

to guarantee implementation correctness1, to prove authenticity
properties [15], to aid resource management [44], or to optimise
code using transformations. We focus on the last of these. As an
example, purely functional code can be executed out of order:

x←M1; y←M2; N = y←M2; x←M1; N

This reordering holds more generally, if the termsM1 andM2 have
non-interfering effects. Such transformations are commonly used in
optimising compilers. They are traditionally called optimisations,
even if neither side is always the more optimal.

In a sequence of papers, Benton et al. [4–8] prove soundness of
such optimisations for increasingly complex sets of effects. How-
ever, any change in the language requires a complete reformulation
of its semantics and so of the soundness proofs, even though the
essential reasons for the validity of the optimisations remain the
same. Thus, this approach is not robust, as small language changes
cause global theory changes.

A possible way to obtain robustness is to study effect systems
in general. One would hope for a modular approach, seeking to
isolate those parts of the theory that change under small language
changes, and then recombining them with the unchanging parts.
Such a theory may not only be important for compiler optimisations
in big, stable languages. It can also be used for effect-dependent
equational reasoning. This use may be especially helpful in the
case of small, domain-specific languages, as optimising compilers
are hardly ever designed for them and their diversity necessitates
proceeding modularly.

The only available general work on effect systems seems to
be that of Marino and Millstein [28]. They devise a methodology
to derive type and effect frameworks which they apply to a call-
by-value language with recursion and references; however, their
methodology does not account for effect-dependent optimisations.

Fortunately, Wadler and Thiemann [46, 47] had previously
made an important connection with the monadic approach to
computational effects. They translated judgements of the form
Γ ⊢M : A ! ε in a region analysis calculus to judgements of the
form Γ′ ⊢M ′ : TεA in a multi-monadic calculus. They gave the
latter calculus an operational semantics, and conjectured the exis-
tence of a corresponding general monadic denotational semantics
in which Tε would denote a monad corresponding to the effects in
ε, and in which the partial order of effect sets and inclusions would

1 E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links 0.5, 2009.
http://groups.inf.ed.ac.uk/links .
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induce a hierarchy of monads and monad morphisms, as follows:

ε4 Tε4

ε2
⊆

ε3

⊇

=⇒ Tε2

??⑧⑧⑧
Tε3

__❄❄❄

ε1

⊇
⊆

Tε1

__❄❄❄
??⑧⑧⑧

Hierarchies of monads in this spirit were identified by both Tol-
mach [45] and Kieburtz [23]. However, neither hierarchy corre-
sponded fully to their effect set partial order.

Plotkin and Power’s algebraic theory of effects [34, 35] provides
a semantic foundation for computational effects that focuses on
the operations causing the effects. These operations form a single-
sorted signature with a natural equational theory. Using tools from
universal algebra and category theory, one obtains the standard
monadic semantics for such computational effects. The shift in fo-
cus from monads to effect operations and their equational theories
allows a modular treatment: Hyland et al. [19] show that the the-
ories of combinations of effects can often be built up from those
for individual effects by simple operations such as disjoint sum.
To model recursion, the algebraic theory of effects turns to domain
theory, replacing equational theories by inequational theories.

We argue that the algebraic view of effects provides the miss-
ing link needed to develop a general theory of type and effect sys-
tems. With the right choice of signature, effects (i.e., the elements
of effect sets ε) can be identified with the operations. This sug-
gests the way to a full and general account of Gifford-style type
and effect systems: effect systems and effect reconstruction arise
out of the effect signature; denotational semantics arises out of the
(in)equations; and effect-dependent program logic, including opti-
misations, arises from this semantics.

We concentrate on denotational semantics and optimisations.
We present a language, MAIL (Multi-Adjunctive Intermediate Lan-
guage), which can be thought of as the intermediate language of a
compiler. Its terms have both type and effect annotations; these can
be thought of as having arisen from a source code syntactic anal-
ysis. The denotational semantics of MAIL provides a foundation
for optimisations. An optimisation is simply an equation between
MAIL terms, and it is valid in a MAIL model if both terms have the
same denotation.

We see optimisations as falling into three classes: structural,
algebraic, and abstract. Structural optimisations arise out of the
structure of MAIL models, hence hold in all models; η, β and se-
quencing laws provide typical examples. Algebraic optimisations
arise from equations for individual effects in the inequational theo-
ries underlying the semantics; a typical example is

(x := 1; x := 0) = (x := 0)

These are the bread and butter of effectful program optimisation.
Finally, abstract optimisations arise from global properties of

effects. The Discard optimisation x ← M ; N = N is one such
example. There is a strong connection to Führmann’s work [13]. He
had previously considered properties of arrows in Kleisli categories
and their dependence on the nature of the monad, and it turns out
that these give rise to several abstract optimisations. In particular, as
we see below, Discard holds if, and only if, the underlying monad
is affine.

Viewing abstract optimisations algebraically reveals a connec-
tion to algebraic laws. For example, the underlying monad is affine
if, and only if, the absorption law f(x, . . . , x) = x holds generally,
i.e., for every operation f . Making use of [19], one can then estab-
lish the validity of abstract optimisations modularly. For example,
if the absorption law holds generally for each of two theories, then
it also holds for their disjoint sum.

Our language arose from a category-theoretic formulation of the
semantics, specifically as presheaves of adjunctions over partial or-
ders of sets of effects. In order to maintain an accessible account,
we use a minimum of category theory. We hope this will allow in-
formed readers to recognise the inherent categorical structure with-
out excluding readers who are not familiar with category theory.

The syntax and denotational semantics of MAIL are given in
Sections 2 and 3. Two classes of semantic models for MAIL are
given (Theorems 9 and 12), both based on standard algebraic
semantics, settling Wadler and Thiemann’s conjecture (while we
write in terms of theories and their translations, rather than monads
and their morphisms, their relationship is well-known, see, e.g.,
[18]). The two classes of models are related to the semantics of
Alg-CBPV, an algebraic variant of Call-by-Push-Value, justifying
the validity of effect dependent optimisations (Theorems 9 and 12).

Next, Section 4 validates, unifies, generalises, and classifies
effect dependent optimisations, including new ones (Figure 7).
Algebraic conditions for validating these optimisations are pre-
sented (Figure 7), and algebraic techniques are given to recognise
and modularly combine validity of optimisations (Theorem 13–
Proposition 17).

Section 5 considers an example effectful language with recur-
sion, memory regions, exceptions (normal and rollback), terminal
I/O and non-determinism, and applies our theory to validate effect
dependent optimisations for it. Our modular methodology enables
us to significantly cut down on the amount of work involved. We
conclude, and discuss related and further work, in Sections 6 and 7.

2. Multi-Adjunctive Intermediate Language

MAIL is based on Levy’s Call-by-Push-Value (CBPV) [26] and
inspired by Filinski’s M3L (MultiMonadic MetaLanguage) [11],
whose latest version draws heavily on CBPV [12]. The CBPV

paradigm subsumes call-by-name and call-by-value, both syntac-
tically and semantically, and hence is appealing for a general ac-
count. Also, in CBPV evaluation order is explicit, as in intermediate
languages. Moreover, expressing our optimisations in CBPV de-
composes more complicated optimisations into orthogonal ones
(see Section 4). Thus the CBPV paradigm seems well-suited for use
in intermediate languages for effect-dependent optimisation. We
reuse as much of Levy’s work as possible, in order to focus on the
issues inherent to effect systems.

MAIL is parameterised by signatures. An auxiliary notion of
pre-signatures makes the definition of signatures more manageable:

Definition 1. A MAIL pre-signature σ is a tuple 〈Bsc, |σ|,Ω, E, κ〉,
where: Bsc is a set of basic types, ranged over byK; |σ| is a set of
effect operation symbols, ranged over by op with a distinguished
element Ω; E ⊆ P (|σ|) is a subset of the powerset of |σ|, the set
of effect sets, ranged over by ε; and κ is a set of built-in constants,
ranged over by c.

For example, Bsc may include the types: Word for 64-bit
words, Loc for memory locations, Str for strings, Char for
characters, or Exc for exceptions. The effect operation symbol set
|σ| may be finite:

{Ω, lookup, update, input, output, throw, choose}

or even countably infinite: {Ω, thrown |n ∈ N}. In the latter case,
we may want to restrict E to be a countable set, such as that of all fi-
nite subsetsPfin (|σ|), guaranteeing a countable syntax. The distin-
guished symbol Ω represents non-termination. The set κ typically
includes primitives to manipulate basic values, such as: number
constants 0, 1, 2; arithmetic operators +, ∗, div; boolean operati-
ons =, >=, <; string manipulation primitives ′′abcd123′′, ++; and
predefined exceptions ArithmeticOverflow, DivideByZero.
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Kinds: K ::= Val | Comp(ε)

Value
Types: A,B, . . . ::= K | 1 | A1 × A2 | 0 | A1 + A2 | UεB

Computation
Types: A,B, . . . ::= FεA | B1 × B2 | A→ B

Ground Value
Types: G ::= K | 1 | G1 ×G2 | 0 | G1 +G2

Value
Terms: V ::= c | x | ⋆ | (V1, V2) | inj

A1+A2
1 V

| inj
A1+A2
2 V | thunk M

Computation
Terms: M,N, . . . ::= coerceε1⊆ε2

M | returnεV |M to x :A.N
| λ {1 7→M1, 2 7→ M2} | 1‘M | 2‘M | λx : A.M
| V ‘M | match V as (x1 : A1, x2 : A2) .M

| match V : 0 as {}B

| match V as {inj1x1 :A1.M1, inj2x2 :A2.M2}

| force V | µx : UεB.M | op
B

V
M

Figure 1. MAIL Syntax

The syntax of MAIL, for a given pre-signature σ, is displayed
in Figure 1. It refines the CBPV dichotomy between values and
computations. Instead of one kind of computation, for each effect
set ε ∈ E , we have ε-computations Comp(ε) that can cause effects
in ε. We view MAIL as multiple copies of CBPV, one for each ε,
sharing the same values. One can translate between these different
CBPVs by means of coercion (see below).

Our types are a slight variation on CBPV types. Note that basic
types are always value types. The unit, product, zero, and sum
value types are standard. We have modified the CBPV thunk type
to thunks UεB of ε-computations of type B. For each ε ∈ E , the
returner type FεA is the type of ε-computations that return a value
of type A. It plays a similar rôle to that of the monadic type TA
(where T is a monad) in Haskell. Levy’s CBPV also has products of
computations, which we include, and functions are computations
that depend on a value. The ground value types G ∈ Gnd are
those value types which do not include thunks. We call types of the
form FεG ground returner types.

All of the built-in constants of σ-MAIL are value terms. The
variables, unit value, and pairing construct are standard. Injections
are annotated with their sum type. Computations M are thunked
into values thunkM , just as in ordinary CBPV.

Many type and effect systems contain a sub-effecting rule: ifM
is an ε1-computation and ε1 ⊆ ε2 then M is an ε2-computation.
One implication of such a rule is that well-typed terms can have
multiple types, and even multiple type derivations. As a conse-
quence, the denotational semantics can no longer be defined di-
rectly on terms. Instead, it needs to be defined on the proofs that
these terms are well-typed, and then coherence results are needed
to show that the different semantics are compatible with each other.

This issue is familiar from languages that support subtyping.
One standard way to circumvent it, followed here, is to use ex-
plicit coercion between a subtype and its supertype [43]. The
terms coerceε1⊆ε2M explicitly coerce ε1-computations to ε2-
computations.

As usual in CBPV, we can turn any value into an ε-computation
by returning it. The M to x : A.N construct sequences compu-
tations; it is analogous to x←M ;N in Haskell. Note the intrinsic
typing (a.k.a. Church-style typing).

The standard operational semantics of CBPV uses a stack ma-
chine. The two λ terms pop from the stack while the application
terms −‘M push onto it. Thus, λ {1 7→M1,2 7→M2} pops a tag
off the stack and executes M1 or M2 accordingly. In turn, 1‘M
pushes the tag 1 onto the stack and continues to execute M . Sim-

⊢k K : Val ⊢k 1 : Val
⊢k A1 : Val ⊢k A2 : Val

⊢k A1 × A2 : Val

⊢k 0 : Val
⊢k A1 : Val ⊢k A2 : Val

⊢k A1 + A2 : Val

⊢k B : Comp(ε)

⊢k UεB : Val

⊢k A : Val

⊢k FεA : Comp(ε)

⊢k B1 : Comp(ε) ⊢k B2 : Comp(ε)

⊢k B1 × B2 : Comp(ε)

⊢k A : Val ⊢k B : Comp(ε)

⊢k A→ B : Comp(ε)

Figure 2. MAIL Kind System

ilarly, λx : A.M pops a value of type A and binds x to it, while
V ‘M pushes V onto the stack.

The pattern-matching terms eliminating products, zero and sum
values are standard. Thunked computations are eliminated by forc-
ing. Recursion is expressed by least fixed-points, as usual.

Importantly, computational effects are caused by the op
B
VM

terms. As an example, the following computation consists of a
memory lookup operation, dereferencing memory location ℓ, fol-
lowed by returning the memory word w stored there:

deref
ε (ℓ)

def
= lookup

FεWord

ℓ (λw : Word. returnεw)

The effect operation symbol lookup takes as a parameter the loca-
tion ℓ to be dereferenced, and requires as argument a computation
depending on the dereferenced memory word.

As another example, consider a non-deterministic choice opera-
tor choose, and a computation for non-deterministic coin tossing:

toss
ε def
= choose

Fε1+1

⋆ (λv : 1+ 1. returnε v)

In this case the parameter is the unit value ⋆.

In general, op
B
VM is an effect operation term with parameter V

and argument M . Terms of the form

genε
op (V )

def
= opFεA

V (λx : A. returnεx)

are called generic effects. Thus derefε and tossε are the generic
effects corresponding to lookup and choose respectively.

Our combination of CBPV syntax, intrinsic typing and explicit
coercion leads to a verbose and cumbersome syntax. However,
considering our setting as an intermediate representation used by
an optimising compiler, this issue becomes irrelevant, as the syntax
is generated automatically, being seen only by the compiler.

The kind system for MAIL, given a pre-signature σ, is dis-
played in Figure 2; it consists of a kind judgement relation ⊢k be-
tween types and kinds. We denote by Val the set of well-kinded
value types {V | ⊢k V : Val}. Similarly, we write Comp(ε) for
the set of well-kinded ε-computation types. A well-kinded context
Γ : Dom (Γ)→ Val is a function from a finite set of variables to
Val. We write Γ, x : A for the extension Γ[x 7→ A].

Given a pre-signature σ, an arity assignment ar : |σ| → Gnd2

sends elements of |σ| to pairs of ground types such that ar(Ω) =
〈0,1〉. When ar(op) = 〈A,P 〉 we write instead op : A→ P .
The first component A is called the arity type and the second
component P is called the parameter type. When the parameter
type is P = 1 we simply write op : A. When op : 0 we call op an
(effect) constant symbol. Thus, Ω is a constant symbol.

For example, one would have lookup : Word→ Loc as
lookup has a location parameter and its argument expects the cor-
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Γ ⊢v c : Ac

Γ(x) = A

Γ ⊢v x : A
Γ ⊢v ⋆ : 1

Γ ⊢v V1 : A1 Γ ⊢v V2 : A2

Γ ⊢v (V1, V2) : A1 × A2

Γ ⊢v V : Ai

Γ ⊢v inj
A1+A2
i

V : A1 + A2

Γ ⊢ε M : B

Γ ⊢v thunk M : UεB

Γ ⊢ε1 M : Fε1
A

Γ ⊢ε2 coerceε1⊆ε2
M : Fε2

A

Γ ⊢v V : A

Γ ⊢ε returnεV : FεA

Γ ⊢ε M : FεA Γ, x : A ⊢ε N : B

Γ ⊢ε M to x : A.N : B

Γ ⊢ε M1 : B1 Γ ⊢ε M2 : B2

Γ ⊢ε λ {1 7→ M1, 2 7→M2} : B1 × B2

Γ ⊢ε M : B1 × B2

Γ ⊢ε i‘M : Bi

Γ, x : A ⊢ε M : B

Γ ⊢ε λx : A.M : A→ B

Γ ⊢v V : A Γ ⊢ε M : A→ B

Γ ⊢ε V ‘M : B

Γ ⊢v V : A1 × A2 Γ, x1 : A2, y : A2 ⊢ε M : B

Γ ⊢ε match V as (x1 : A1, x2 : A2) .M : B

Γ ⊢v V : 0

Γ ⊢ε match V : 0 as {}B : B

Γ ⊢v V : A1 + A2 Γ, x1 : A1 ⊢ε M1 : B Γ, x2 : A2 ⊢ε M2 : B

Γ ⊢ε match V as {inj1x1 : A1.M1, inj2x2 : A2.M2} : B

Γ ⊢v V : UεB

Γ ⊢ε force V : B

Γ, x : UεB ⊢ε M : B
(Ω ∈ ε)

Γ ⊢ε µx : UεB.M : B

Γ ⊢ε V : P Γ ⊢ε M : A→ B
(op : A→ P, op ∈ ε)

Γ ⊢ε op
B

V
M : B

Figure 3. MAIL Type System

responding memory word. Similarly, one would have choose : 2
where, 2 = 1 + 1, as choose has a trivial parameter. We say
that choose is a binary operation symbol. Example constant type
assignments are: ′a′ : Char, ++ : U∅((Str× Str) → F∅Str),

and, for ε
def
= {ArithmeticOverflow}:

+ : Uε(Word×Word→ FεWord)

Definition 2. A MAIL signature is a triple Σ = 〈σ, ar, A−〉 where:
σ is a pre-signature; ar is an arity assignment; andA− : κ→ Val
is a type assignment for the built-in constant symbols.

The type system of MAIL, given a signature Σ, is displayed
in Figure 3; it is given by type judgement relations Γ ⊢v V : A
and Γ ⊢ε M : B, where Γ, A, B are well-kinded contexts, value
types and ε-computation kinds, respectively, and where V , M are
value and computation terms, respectively. Signatures Σ determine
the language of MAIL, meaning its syntax and kind and typing
relations; when we need to mention this dependence we write Σ-
MAIL. We call closed ground returners ⊢ε P : FεG programs.

The type system is straightforward, apart from the rules for co-
ercion, recursion and effect operation symbols. The coercion rule
may seem surprising — we only allow coercion of returners. How-
ever this restriction, which is semantically natural, allows sufficient
generality. For if ε ⊆ ε′, then for any B : Comp(ε) one can
inductively define a type B′ : Comp(ε′) by: (FεA)

′ = Fε′A,
(B1 × B2)

′ = (B1)
′ × (B2)

′, and (A → B)′ = A → B′;
there is then an evident coercion from B to B′.

We note too that, from a CBPV perspective, call-by-value types
are always translated into returners [26], hence the coercion rule

immediately suffices to subsume existing effect systems. We do not
know of any call-by-name effect systems (see also Section 7).

Next, the recursion rule only allows recursive calls when the ef-
fect set includes possible divergence. Finally, the effect operation
rule formalises the informal explanation given earlier. Another way
to view this rule is via continuation passing — we pass a contin-
uation M that, depending on the effect’s result, proceeds after the
effect has been caused. For example, the rules for the I/O effects
input : Char and output : 1→ Char are, for suitable ε’s:

Γ ⊢ε M : Char→ B

Γ ⊢ε input
BM : B

Γ ⊢v V : Char Γ ⊢ε M : 1→ B

Γ ⊢ε output
B
VM : B

The latter is analogous to Levy’s print statement [26]. For the
corresponding generic effects we derive the familiar getε, putε:

Γ ⊢ε get
ε : FεChar

Γ ⊢v V : Char

Γ ⊢ε put
ε : Fε1

3. Semantics

We begin with some preliminary material on domain theory in Sec-
tion 3.1 concerning ω-cpos, and then consider inequational theo-
ries and their models in ω-cpos in Section 3.2. We can then define
models of MAIL and its denotational semantics in Section 3.3. In
Section 3.4 we consider the validity of optimisations and construct
our two main MAIL models — the conservative and axiomatic re-
striction models.

3.1 ω-cpos

Domain theory provides the mathematical machinery needed to
model recursion; here we review terminology and relevant nota-
tion. The simplest type of domains sufficient for our needs are
ω-complete partial orders (ω-cpos), i.e., partial orders W =
〈|W |,≤〉 closed under suprema

∨

an of increasing ω-chains
〈an〉. A (Scott) continuous function f : W1 → W2 between
ω-cpos is a monotone function preserving such suprema (i.e.,
f(

∨

an) =
∨

f(an) for any increasing ω-chain 〈an〉).
A discrete ω-cpo is a set ordered by equality 〈A,=〉. The empty

ω-cpo 0 is 〈∅,=〉; we write ?W : ∅ → |W | for the empty map. The
singleton ω-cpo 1 is 〈{⋆},=〉; we write !W : |W | → {⋆} for the
constantly-⋆ map.

The sumW1+W2 of two ω-cpos is the evident ω-cpo over their
disjoint union |W1|+ |W2|. We write ιi :Wi →W1 +W2 for the
evident injections. Given two continuous functions fi :Wi →W ′,
i = 1, 2, the map [f1, f2] :W1 +W2 →W ′, where:

[f1, f2] (w)
def
=

{

f1(w1) w = ι1w1

f2(w2) w = ι2w2

is continuous. We write n for the discrete domain over n elements,
namely 1 + . . .+ 1.

The product W1 × W2 of two ω-cpos is the component-
wise partial order over their Cartesian product |W1| × |W2|. We
write πi :W1 ×W2 →Wi for the evident projections. Given
two continuous functions fi :W

′ →Wi, i = 1, 2, the map
〈f1, f2〉 :W

′ →W1 ×W2, where:

〈f1, f2〉 (w)
def
= 〈f1(w), f2(w)〉

is continuous. The product
∏n

i=1Wi of any finite number of ω-
cpos is defined similarly.

The function space WW1
2 of two ω-cpos consists of all contin-

uous functions from W1 to W2, ordered pointwise: f ≤ g iff for
all w ∈ W1, f(w) ≤ g(w); its lubs are also given pointwise. We

write eval : WW1
2 ×W1 → W2 for the evaluation map given by

〈f, d〉 7→ f(w). If f :
∏

iWi → W is continuous then currying

4 2011/11/16



the j-th component 〈di〉i 6=j 7→ (wj 7→ f 〈di〉) yields a continuous

map curryj f :
(

∏

i 6=j Wi

)

→WWj .

An ω-cpo W is pointed if it has a least element ⊥. Continuous
functions over pointed ω-cpos have least fixed-points and the least

fixed-point operation µ :WW →W is continuous.

3.2 Inequational Theories

A full account of Plotkin and Power’s algebraic theory of effects re-
quires the notion of (discrete) countable ωCPO-enriched Lawvere
theories [17]. Here we restrict to the simpler, and more elementary,
(finitary) inequational theories.

An (equational) signature is a pair Σ = 〈|Σ|, arΣ〉 where
|Σ| is a set of operation symbols and the arity function arΣ as-
signs to each operation f ∈ Σ a finite set arΣ(f) called its ar-
ity. We adopt the notation f : A for A = ar(f). When f : n we
say that f is n-ary. Nullary operations are also called constants.
We will write {f1 : ar(f1), . . . , fn : ar(fn)} for the signature
〈{f1, . . . , fn}, ar〉.

For example, the non-determinism signature, ΣND, is {∨ : 2}.
It consists of exactly one binary operation ∨ : 2. Again, given a
finite set V of storable values, the global V-state signature, ΣGS(V)

is given by a look-up operation lookup : V and V-many unary
operations for updating the state updatev : 1 (v ∈ V).

Fix a countable set of variables Var ranged over by x, y,

etc. Given a signature Σ, we define the set TermsΣ of Σ-terms
inductively: a term is either a variable x, or of the form f(τ) where

f : A and τ : A → TermsΣ . When f is n-ary we may use the
usual positional notation f(t1, . . . , tn) to write such terms, and,
in the binary case, we may use infix notation. It is routine to define
substitutions θ : Var→ Terms, and their applications tθ to terms.

Recall that a preorder is a reflexive, transitive binary relation.
An inequational theory T is a pair 〈Σ,≤〉 where Σ is a signature
and ≤ is a preorder over terms, which is a substitutive congruence,
meaning that it satisfies the following two properties:

Congruence For all substitutions θ1, θ2 satisfying, for all x in
Var, θ1(x) ≤ θ2(x), and for all terms t, we have tθ1 ≤ tθ2.
Substitution For all terms t1,t2 for which t1 ≤ t2, and for all
substitutions θ, we have t1θ ≤ t2θ.

We write t = s iff t ≤ s and s ≤ t.
Let Σ be a signature. The free or empty theory for Σ is given by

syntactic equality, 〈Σ,≡〉. The inconsistent theory for Σ is given

by the full relation
〈

Σ,Terms2
〉

. Note that all theories 〈Σ,≤〉 lie

between these two theories, i.e., ≡ ⊆ ≤ ⊆ Terms2.
Let Ax ⊆ Terms × Terms be any set of axioms. The theory

generated from Ax is ThΣAx = 〈Σ,≤〉 where ≤ is the least pre-
order over terms that contains Ax and which is a substitutive con-
gruence. Note that the empty theory is ThΣ∅ and the inconsistent

theory is ThΣ{x ≤ y} = ThΣ{x = y}. The lifting theory T⊥ is

given by Th{⊥:0}{⊥ ≤ x}. A more interesting example is the the-
ory of semilattices, which consists of commutativity, associativity
and absorption equations for the non-determinism signature ΣND:

x ∨ y = y ∨ x, (x ∨ y) ∨ z = x ∨ (y ∨ z), x ∨ x = x

The theory of lower semilattices is obtained by adding the axiom
x ≤ x ∨ y; the theory of upper semilattices is obtained by instead
adding x ≥ x∨y. As a final example, let V be a finite set of storable
values. The corresponding theory of global state arises out of the
following three equations [29, 34] over the global state signature
ΣGS(V):

lookup (λv : V.updatev(x)) = x

updatev0(lookup (λv : V.xv)) = updatev0(xv0)

updatev1(updatev2(x)) = updatev2(x)

Given a signature Σ, an ω-cpo Σ-algebra A consists of a
pair

〈

|A|, ⟦−⟧A
〉

where |A| is an ω-cpo and ⟦−⟧A assigns to

each operation f : A a continuous function ⟦f⟧ : |A|A → |A|.
Every ω-cpo Σ-algebra A induces an interpretation function

IA ⟦−⟧− : Terms × |A|Var → |A|, given for every variable as-

signment δ ∈ |A|Var
inductively over terms t by:

IA ⟦t⟧δ
def
=

{

δ(x) t = x
(

⟦f⟧A (λa : A.⟦τ(a)⟧δ)
)

t = f(τ), f : A

Let A1, A2 be two such Σ-algebras. Their product A1 ×A2 is
given by

〈

|A|1 × |A|2, ⟦−⟧×
〉

, where, for all f : A, ⟦f⟧× (τ) is

given pointwise by
〈

⟦f⟧A1
(π1 ◦ τ), ⟦f⟧A2

(π2 ◦ τ)
〉

. LetA be a

Σ-algebra and W an ω-cpo. The power algebra AW is given by
〈

|A|W , ⟦−⟧
〉

, where, for all f : A, ⟦f⟧ (τ) is given pointwise by

λw.⟦f⟧A (λa.τ(a)(w)).
Given an inequational theory T = 〈Σ,≤〉, anω-cpo T -model is

a Σ-algebraA such that, for all t1 ≤ t2, and for all δ ∈ |A|Var
, we

have ⟦t1⟧δ ≤ ⟦t2⟧δ . For example, the discretely-ordered collection
of all non-empty finite subsets of a set with the union operation is
a model of the theory of semilattices. As another example, let V

be a finite discrete ω-cpo of storable values and let W be any ω-

cpo. Then (V ×W )V is the carrier set for a ΣGS(V)-algebra with
the obvious operations. The product of two T -models is again a

T -model. If A is a T model and W an ω-cpo, then AW is also a
T -model.

Given two Σ-algebras A1, A2, a Σ-algebra homomorphism
h : A1 → A2 is a continuous function h : |A1| → |A2| that sat-

isfies, for all f : A and τ ∈ |A1|
A

:

h
(

⟦f⟧1 (τ)
)

= ⟦f⟧2 (h ◦ τ)

Homomorphisms between two T -models are Σ-algebra homomor-
phisms between them as algebras. For example, the projections
πi : |A1| × |A2| → |Ai| are Σ-algebra homomorphisms from the
product A1 ×A2, for all Σ-algebras A1, A2.

Let T be a theory and W an ω-cpo. The free T -model over
W is a T -model FTW for which exists a continuous function
ηTW :W → |FTW |, called the unit of the free model, such that
for all T -models A and continuous functions f : W → |A|
there exists a unique T -algebra homomorphism f †

T : FTW → A
satisfying f = f † ◦ η .

For example, the free model of the lifting theory, defined by

Th{⊥:0}{Ω ≤ x}, over an ω-cpo W is given by |W | + {⊥} with
w ≤ v iff w = ⊥ or w ≤W v. As another example, the TGS(V)-

algebra on (V × W )V described above is the free model over W
[19, 34]. The free model for any theory over any ω-cpo always
exists, by appeal to Freyd’s adjoint functor theorem, cf. Abramsky
and Jung [1]. However, its structure may be non-trivial [16, 31].

Let Σ1, Σ2 be signatures. A translation T : Σ1 → Σ2 is a

pair
〈

x−
−,T (−)

〉

where x
f
− : A →֒ Var is an injection, for each

Σ1-operation f : A, and T (−) : Σ1 → TermsΣ2 such that, for
each Σ1-operation f , all the variables in T (f) are in the im-

age of x
f
−. I.e., for each a in A there is a distinct variable xf

a ,

and the variables in T (f) may only involve these variables.
Each translation T : Σ1 → Σ2 induces a translation function

T : TermsΣ1 → TermsΣ2 where T(x) = x and where T(f(τ))
is given by substituting T(τa) for xf

a in T(f) simultaneously for

all a ∈ A, i.e., T(f(τ)) = T(f)
[

T(τa)/xf
a

]

a∈A
.

Let T1, T2 be theories. A translation T : T1 → T2 is a transla-
tion T : Σ1 → Σ2 that respects the inequalities:

t1 ≤1 t2 =⇒ T(t1) ≤2 T(t2)
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For example, given a finite set V, consider the overwrite theory
TOW(V) given by the signature {updatev : 1 | v ∈ V} and the ax-

ioms
{

updatev1(updatev2x) = updatev2x
∣

∣ v1, v2 ∈ V
}

. The

map updatev 7→ updatevx⋆ induces a translation from TOW(V)

to TGS(V). We will only use such trivial translations, which have
the form 〈〈f, a〉 7→ xa, f 7→ f(λa.xa)〉, i.e., they translate opera-
tion symbols to themselves. They are translations from T1 to T2 iff
Σ1 ⊆ Σ2 and ≤1 ⊆ ≤2.

Let T : T1 → T2 be a translation. Every T2-model A induces
a T1-model T∗(A) as follows. The carrier ω-cpo |T∗(A)| is |A|.
For each operation f : A in Σ1, we have a term T(f) ∈ TermsΣ2 .
Recall the interpretation function IA ⟦−⟧−, and set, for all δ in

|A|Var
:

⟦f⟧
T∗(A) (δ)

def
= IA ⟦T(f)⟧δ

We obtain a continuous function |T∗(A)|A → |T∗(A)|. Thus
T

∗(A) is a Σ1-algebra, and because T preserves T1-inequalities
and A is a T2-model, T∗(A) is a T1-model. Given an ω-cpo W ,

the T2 unit over W is a map ηT2
W :W → |T∗(FT2W )|. Therefore,

by the free T1-model definition, there exists a (unique) homomor-
phism

mT

W
def
=

(

ηT2
W

)†

T1

: FT1W → T
∗(FT2W )

such that ηT2
W = mT

W ◦ η
T1
W . Following Filinski’s layered mon-

ads [10], we call the function mT

W : |FT1W | → |FT2W | the lay-
ering of FT1W over FT2W along T.

Finally, we introduce two common methods to combine theories
[19]. Let Σ1, Σ2 be signatures. Their sum Σ1 + Σ2 is given by

|Σ1 +Σ2|
def
= |Σ1|+ |Σ2| and arΣ1+Σ2

(ιif)
def
= ari(f). Given a

term t in TermsΣi , relabelling the operations in t according to the

injection ιi : |Σi| → |Σ1 +Σ2| yields a term ιit in TermsΣ1+Σ2 .
We can apply this relabelling to binary relations over Σi in the
obvious manner. Let T1, T2 be two theories. Their sum T1 + T2
is given by ThΣ1+Σ2((ι1 ≤1) ∪ (ι2 ≤2)). Their tensor T1 ⊗ T2
is given by ThΣ1+Σ2((ι1 ≤1) ∪ (ι2 ≤2) ∪ (AxΣ1⊗Σ2

)), where
AxΣ1⊗Σ2

contains all equations of the form:

f1(λa1.f
2(λa2.xa1,a2)) = f2(λa2.f

1(λa1.xa1,a2))

where f i : Ai in ιiΣi, and ai ∈ Ai.

3.3 Semantics

Given a MAIL signature Σ, a Σ-MAIL model consists of a quadruple
〈B⟦−⟧ , T−,T−,K⟦−⟧〉 which we describe presently.

To each basic type K ∈ Bsc, we assign an ω-cpo B⟦K⟧. This
assignment allows us to interpret ground value types G ∈ Gnd:

G⟦K⟧ def
= B⟦K⟧

G⟦1⟧ def
= 1 G⟦G1 ×G2⟧

def
= G⟦G1⟧× G⟦G2⟧

G⟦0⟧ def
= 0 G⟦G1 +G2⟧

def
= G⟦G1⟧+ G⟦G2⟧

We impose on B⟦−⟧ that, for all op : A→ P , G⟦A⟧ is a fi-
nite discrete ω-cpo and G⟦P ⟧ is discrete. For example, we may

choose B⟦Word⟧ and B⟦Loc⟧ to be 2
64 in a 64-bit setting, and

B⟦Char⟧ to be 2
7 for ASCII characters. As these interpretations

are finite discrete domains, every ground type involving them will
denote a finite discrete ω-cpo.

The signature Σ and this assignment induce an equational sig-
nature:

S⟦|σ|⟧ def
=

{

opp : G⟦A⟧
∣

∣ op : A→ P ∈ |σ| , p ∈ G⟦P ⟧
}

which, in turn, induces an equational sub-signature, for each ε ∈ E :

|SUB⟦ε⟧| def=
{

opp ∈ S⟦|σ|⟧
∣

∣ op ∈ ε
}

V⟦K⟧ def
= B⟦K⟧

V⟦1⟧ def
= 1

V⟦A1 × A2⟧ def
= ⟦A1⟧× ⟦A2⟧

V⟦0⟧ def
= 0

V⟦A1 + A2⟧ def
= ⟦A1⟧+ ⟦A2⟧

V⟦UεB⟧ def
= |⟦B⟧|

CXT ⟦Γ⟧ def
=

∏

x∈Dom(Γ)

⟦Γ(x)⟧

Cε⟦FεA⟧ def
= Fε⟦A⟧

Cε⟦B1 × B2⟧
def
= ⟦B1⟧× ⟦B2⟧

Cε⟦A→ B⟧ def
= ⟦B⟧⟦A⟧

Figure 4. Type Interpretation

The next component, T−, assigns to each ε ∈ E an inequational
theory Tε = 〈Σε,≤ε〉, such that SUB⟦ε⟧ ⊆ Σε as a sub-
signature, and such that if Ω ∈ ε then Ω ≤ε x. Thus we get,
for each ε ∈ E and ω-cpo W , the free ω-cpo Tε-algebra, FεW
and its corresponding unit ηε and bijection −†

ε. The side condition
guarantees that if Ω ∈ ε then all Tε-models are pointed ω-cpos.
This assignment allows us to interpret the Σ-MAIL type system
(see Figure 4): value types are interpreted as ω-cpos via V⟦−⟧; ε-
computations as Tε-algebras via Cε⟦−⟧; and contexts Γ as products

via CXT ⟦−⟧. For example, take T∅ to be Th∅∅ the empty theory
over the empty signature. In this case, T∅-models are just ω-cpos,
and F∅W =W .

The third component, T−, assigns to each pair of subsets
ε1⊆ε2 in E a translation Tε1⊆ε2 :Tε1→Tε2 . We require this trans-
lation to be operation-compatible, Tε1⊆ε2(op) = op(λa.xop

a ), for
all op ∈ ε1, and inclusion-compatible (functorial):

Tε′⊆ε′′ (Tε⊆ε′(op)) = Tε⊆ε′′(op) Tε⊆ε(op) = op(λa.xop
a )

for every triple ε ⊆ ε′ ⊆ ε′′ in E and op : A→ P in ε. For exam-

ple, if T∅ = Th∅∅, we can choose T∅⊆ε to be the empty trans-
lation. These translations induce an inclusion-compatible layering

mε1⊆ε2 .
The final component, K⟦−⟧, assigns to each built-in constant

c ∈ κ an element K⟦c⟧ ∈ V⟦Ac⟧. It is instructive to interpret the
arithmetic constants on 64-bit integers that can cause exceptions as
an example.

We summarise the definition of a Σ-MAIL model:

Definition 3. Let Σ be a MAIL signature. A Σ-MAIL model is a
quadruple M = 〈B⟦−⟧ , T−,T−,K⟦−⟧〉, where: B⟦−⟧ assigns
to each basic type K an ω-cpo such that all |σ|-arities are in-
terpreted as finite discrete domains; T− assigns to each effect set
a theory whose signature includes SUB⟦ε⟧, such that if Ω ∈ ε
then Ω ≤ x; T− assigns to each inclusion ε1 ⊆ ε2 a translation
Tε1⊆ε2 : Tε1 → Tε2 in a compatible manner; and K⟦−⟧ assigns
to each built-in constant c an element K⟦c⟧ ∈ V⟦Ac⟧.

Given a Σ-MAIL model M, we interpret Σ-MAIL terms as
follows (see Figure 5): value terms Γ ⊢v V : A are interpreted
as continuous functions VT ⟦V ⟧ : CXT ⟦Γ⟧→ V⟦A⟧; and ε-
computation terms Γ ⊢ε M : B are interpreted as continuous func-
tions CT ε⟦M⟧ : CXT ⟦Γ⟧→ |Cε⟦B⟧|. The semantic functions
have straightforward definitions. The only exception is coercion

from ε1-returners to ε2-returners via the layering mε1⊆ε2 . Also
note how the type system and the side condition over Tε ensures
these semantic functions are well-defined.

3.4 Validity and Models

First, we define the validity of optimisations in MAIL:

Definition 4. Let M be a Σ-MAIL model, and Γ ⊢ Pi : X ,
i = 1, 2 be two well-typed Σ-MAIL terms. We say that the opti-
misation Γ ⊢ P1 = P2 : X is valid inM ifM⟦P1⟧ =M⟦P2⟧.
In this case we writeM |= Γ ⊢ P1 = P2 : X . When Γ and X are
clear, we simply writeM |= P1 = P2.
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VT ⟦c⟧ (γ) def
= ⟦c⟧ VT ⟦x⟧ (γ) def

= πx(γ) VT ⟦⋆⟧ (γ) def
= ⋆

VT ⟦(V1, V2)⟧ (γ) def
= 〈⟦V1⟧ (γ), ⟦V2⟧ (γ)〉

VT ⟦injA1+A2
i

V ⟧ (γ) def
= ιi(⟦V ⟧ (γ))

CT ε2
⟦coerceε1⊆ε2

M⟧ (γ) def
= m

ε1⊆ε2 (⟦M⟧ (γ))

CT ε⟦returnεV ⟧ (γ) def
= η

ε
(⟦V ⟧ (γ))

CT ε⟦M to x : A.N⟧ (γ) def
= (λa.⟦N⟧ (γ [x 7→ a]))

†

ε(⟦M⟧ (γ))

CT ε⟦i‘M⟧ (γ) def
= πi(⟦M⟧ (γ))

CT ε⟦V ‘M⟧ (γ) def
= (⟦M⟧ (γ)) (⟦V ⟧ (γ))

CT ε⟦ match V : 0 as {}B⟧ def
= ?⟦B⟧

CT ε⟦ match V as {inj1x1 : A1.M1, inj2x2 : A2.M2}⟧ (γ)

def
=

{

⟦M1⟧ (γ [x1 7→ a1]) ⟦V ⟧ (γ) = ι1a1
⟦M2⟧ (γ [x2 7→ a2]) ⟦V ⟧ (γ) = ι2a2

CT ε⟦µx : UεB.M⟧ (γ) def
= µλf ∈ |⟦B⟧|.⟦M⟧ (γ [x 7→ f ])

CT ε⟦opB

V
M⟧ (γ) def

= ⟦op⟦V ⟧(γ)⟧⟦B⟧ (⟦M⟧ (γ))

Figure 5. Term Interpretation

However, we are actually interested in the validity of optimisa-
tions with the effect annotations erased, as that will correspond to
the validity of optimisations in the source language. So we need a
suitable “algebraic” version of CBPV. We obtain such a language,

Σ-Alg-CBPV, by specialising MAIL to signatures with E
def
= {|σ|}.

Models of Σ-Alg-CBPV consist of interpretations for basic types, a
single inequational theory T|σ|, and interpretations for the built-in
constants. Thus we obtain a syntax and semantics for CBPV with
recursion and algebraic effects.

Definition 5. A simple MAIL signature is a MAIL signature Σ such
that |σ| ∈ E , and for each built-in constant c, the only effect set
appearing in Ac is |σ|.

Let Σ be a simple signature. Then, by replacing E with {|σ|}
and ε’s with |σ| one obtains an Alg-CBPV signature Σ♮. There is

an obvious erasure operation (−)♮ that yields, for each syntactic

Σ-MAIL entity, such as typeX or term P , a corresponding Σ♮-Alg-

CBPV entity, such as X♮ or P ♮ respectively. This erasure operation
preserves well-kindedness and well-typedness.

Models for Algebraic CBPV with common combinations of ef-
fects, and means to combine and construct them, are readily avail-
able in the literature [19, 20, 34]. Given a simple signature Σ and

one such Σ♮-Alg-CBPV model, we now give three corresponding

Σ-MAIL models that can be used for reasoning about Σ♮-Alg-CBPV

programs.

Lemma 6. Let Σ be a simple MAIL signature. For each Σ♮-

Alg-CBPV model M there exists a Σ-MAIL model M♭ such that
Tε = T, and Tε1⊆ε2 is the identity translation.

Further, for all well-typed terms Γ ⊢ P : X we haveM♭⟦X⟧ =
M⟦X♮⟧ andM♭⟦P ⟧ =M⟦P ♮⟧.

The proof is straightforward, where the notion of a simple signa-
ture guarantees our ability to choose interpretations for Σ-MAIL’s
constants. (It would be useful to extend our results to non-simple

signatures.) We callM♭ the benchmark model. Lemma 6 immedi-

ately yields a connection between Σ-MAIL and Σ♮-Alg-CBPV va-
lidity:

Theorem 7. LetM be a Σ♮-Alg-CBPV model. For any two well-
typed Σ-MAIL programs ⊢ Pi : FεG, i = 1, 2, we have:

M |= P ♮
1 = P ♮

2 ⇐⇒ M♭ |= P1 = P2

This theorem then allows us to compare other Σ-MAIL models

to a given Σ♮-Alg-CBPV model via logical relations arguments
[11, 30, 41] comparing Σ-MAIL models with the benchmark model.

The benchmark model completely ignores the effect annota-
tions. We next introduce a model that takes them into account:

Definition 8. Let T = 〈Σ,≤〉 be an inequational theory. For
any ε ⊆ Σ, the conservative restriction of T to ε, T |ε, is the
inequational theory 〈ε,≤ ∩Termsε × Termsε〉.

Theorem 9. LetM be an Σ♮-Alg-CBPV model. There exists a Σ-

MAIL model M♯ such that Tε is T |⟦ε⟧, and Tε1⊆ε2 is the trivial

translation.
Further, for any two well-typed Σ-MAIL programs ⊢ Pi : FεG,

i = 1, 2, we have:

M |= P ♮
1 = P ♮

2 ⇐⇒ M♯ |= P1 = P2

We callM♯ the conservative restriction model.
Validating optimisations inM♯ depends on finding Tε explic-

itly. This is non-trivial, but is easier with simpler theories. One
might hope to express restrictions of a combination of theories in
terms of the restrictions of their components. This hope leads to the
following (incomplete) conjecture:

Conjecture 10. Let T1,T2 be inequational theories, and let ε1 +
ε2 ⊆ Σ1 + Σ2 be any subset. Under some conditions, the re-

striction (T1 + T2)|ε1+ε2
is identical to the sum of restrictions

T1|ε1 + T2|ε2 . Similarly, under some conditions, (T1 ⊗ T2)|ε1+ε2
is identical to T1|ε1 ⊗ T2|ε2 .

To see that the conjecture is not trivial, consider the theory for
monoids. The signature is {· : 2, e : 0} and the axioms are:

(x · y) · z = x · (y · z) x · e = x = e · x

The non-intuitive, yet elementary, Eckmann-Hilton argument [9]
shows that the two theories (Monoids⊗Monoids)|{·,e}+∅ and

Monoids|{·,e} ⊗ Monoids|∅ are different: multiplication is com-

mutative in the former, but not the latter.
As an intermediate solution, we give a model based on the

presentation of a theory as a collection of axioms.

Definition 11. Let Σ be a signature and Ax a set of axioms over it.
For any ε ⊆ Σ, the axiomatic restriction of Ax to ε, Th|ε 〈Σ,Ax〉,
is the inequational theory Thε(Ax ∩ (Termsε × Termsε)).

We then have an analogue of Theorem 9:

Theorem 12. Let Ax be a set of axioms over Σ, andM a Σ♮-Alg-

CBPV model such that T = ThΣAx. There exists a Σ-MAIL model
M♯ such that Tε is Th|⟦ε⟧ 〈⟦Σ⟧,Ax〉, and Tε1⊆ε2 is the trivial

translation.
Further, for any two well-typed programs ⊢ Pi : X , i = 1, 2,

we have:

M |= P1
♮ = P2

♮ ⇐= M♯ |= P1 = P2

We callM♯ the axiomatic restriction model. Note that by con-
struction M♯ has an explicit axiomatisation of Tε. Moreover, if

T = T1 + T2 and Ti = Th⟦Σi⟧Axi, then T = Th(Ax1 +Ax2)
and the axiomatic restriction model resulting for Ax1 +Ax2 satis-
fies for all εi ⊆ Σi, i = 1, 2:

Tε1+ε2 = Th|⟦ε1+ε2⟧
〈⟦Σ1 +Σ2⟧, (Ax1 +Ax2)〉

= Th⟦Σ1⟧Ax1 +Th⟦Σ2⟧Ax2 = Tε1 + Tε2
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β laws: match
(

V , V
′)

as
(

x : A, y : A
′)
.M = M

[

V /x, V
′
/y

]

match inj
A1+A2
i

V as {inj1x1 :A1.M1, inj2x2 :A2.M2}= Mi [V/xi]

force ( thunk M) = M (returnεV ) to x : A.M = M [V /x]

i‘λ {1 7→M1, 2 7→M2} = Mi V ‘λx : A.M = M [V /x]

η laws: V = ⋆

M [V /z] = match V as
(

x : A, y : A
′)
.M [(x, y)/z] x, y fresh inM

M = match V : 0 as {}B

M [V /z] = match V as

{

inj1x : A .M [inj1x/z],

inj2y : A′.M [inj2y/z]
x, y fresh inM

V = thunk ( force V ) M = M to x : A. returnεx

M = λ {1 7→ 1‘M, 2 7→ 2‘M} N = λx : A. x‘N x fresh inN

Sequencing:

M to x :A.
(

N to y :A
′
. N

′)
=(M to x :A.N)to y :A

′
. N

′
x fresh inN

′

M to x : A. λ {1 7→ N1, 2 7→ N2} = λ

{

1 7→M to x : A.N1,

2 7→M to x : A.N2

M to x : A. λy : A
′
. N = λy : A

′
. (M to x : A.N) y fresh inM

Effects:

op
B

V
λx :A.

(

M to y :A
′
. N

)

=
(

op
FεA′

V λx :A.M
)

to y :A
′
. N x fresh inN

op
B1×B2
V

λx : A. λ

{

1 7→ M1,

2 7→ M2
= λ

{

1 7→ op
B1
V
λx : A.M1,

2 7→ op
B2
V
λx : A.M2

op
A′→B

V
λx : A. λy : A

′
.M = λy : A

′
. op

B

V
λx : A.M x 6= y

Recursion: µx : UεB.M = M [ thunk µx : UεB.M/x]
Coercion: coerceε2⊆ε3

(

coerceε1⊆ε2
M

)

= coerceε1⊆ε3
M

coerceε1⊆ε2

(

returnε1
M

)

= returnε2
M

coerceε⊆ε′ (M to x :A.N) =
(

coerceε⊆ε′M
)

to x :A. coerceε⊆ε′N

coerceε1⊆ε2

(

op
Fε1

A′

V
λx : A.M

)

= op
Fε2

A′

V
λx : A. coerceε1⊆ε2

M

Figure 6. Structural Optimisations

Similarly, if T = T1 ⊗ T2, then Tε1+ε2 = Tε1 ⊗ Tε2 in the ax-
iomatic restriction model resulting for Ax1 +Ax2 + (AxΣ1⊗Σ2

).
Thus the analogue of Conjecture 10 holds by construction forM♯.

Also note that for our purposes, this theorem implies that valida-
tion of optimisations in the modular approximation model is sound.
However, it may not be complete — some sound optimisations may
not be valid in this model.

4. Optimisations

We turn to validating effect-dependent optimisations, formulated as
MAIL equations. This is done semantically, using Theorems 9 or 12
(either one can be used in all cases considered below). We divide
optimisations into structural, algebraic, and abstract groups. We
validate versions of almost all the optimisations in Benton et al. [4–
8], and also some others, not previously considered in the semantics
literature. The only optimisations considered by Benton et al. [4–8]
that we do not treat deal with exception handlers (see Section 7).

Structural optimisations reflect the general structure of our
models. Let Σ be a MAIL signature. Then a Σ-MAIL structural
optimisation is one that is valid in all Σ-MAIL models. Figure 6
shows example schemes for such optimisations. They are all vari-
ants of the standard β, η, sequencing and similar laws found in
the CBPV literature [26, 36], together with ones concerning effect
coercion.

Algebraic optimisations originate locally in the inequational
theories Tε associated to a given model of Σ-MAIL. Each equation
yields such an optimisation. To derive these optimisations from the

equations, one follows [36]. We just give an example here. The
global state theory includes the axiom

updatev0 (lookup (λv.xv)) = updatev0 (xv0)

The corresponding algebraic optimisation is

update
B
V (lookupM) = update

B
V (V ‘M)

Abstract optimisations follow from overall, global properties of
the theories. Each appears in two forms, which we call utilitarian
and pristine. The utilitarian form readily applies to program op-
timisation; the pristine form is shorter and easier to validate, but
perhaps less useful. For example, the utilitarian form of Discard is

Γ ⊢ε M : FεA Γ ⊢ε′ N : B
(ε ⊆ ε′)

M |= coerceε⊆ε′M to x : A.N = N

and its pristine form is

Γ ⊢ε M : FεA

M |= M to x : A. returnε⋆ = returnε⋆

The two forms can always be shown equivalent using structural
optimisations. Instances of both appear in the work of Benton et al.

This optimisation is valid if, for example, Tε is the environment
theory TEnv(V), whose signature is {lookup : V} and axioms are:

x = lookup(λv.x)

lookup (λv1.lookup (λv2.xv1,v2)) = lookup (λv.xv,v)

Note that the optimisation obtained by erasure,M to x :A.N = N
is in general not valid.

Let ⊢ P : FεG be a well-typed Σ-MAIL program. Let P ′ be a
well-typed Σ-MAIL program obtained by applying the Discard op-
timisation to P . If Discard is valid in the conservative (axiomatic)
restriction model, then Theorem 9 (respectively, Theorem 12) guar-

antees that P ♮ = P ′♮ is valid. This equation is valid, even if the
erased Discard used is invalid. Thus Theorems 9 and 12 formalise
the justification for effect dependent optimisation.

Discard also supplies a non-example. Taking M to be a thunk
in the pristine form of the optimisation yields on the right hand
side the term λm : UεFεA. force m to x : A. returnε⋆, and on
the left the term λm : UεFεA. returnε⋆. When Discard is valid,
these two terms are equal. When the erased Discard is invalid, the
erased terms are not equal. Note that these are closed term of the
non-ground type UεFεA→ Fε1. This non-example demonstrates
why it is important to restrict to ground returners in Theorems 9
and 12.

Validating abstract optimisations denotationally reveals an inti-

mate connection2 to Führmann’s work on the structure of call-by-
value [13, 14]: each has a characterisation in semantic terms. For
example, the Discard optimisation holds iff Tε is an affine theory
[13, 21, 24], that is, iff ηε1 : 1→ |Fε1| is an isomorphism.

There are also algebraic characterisations of these semantic
properties. For example, a theory T is affine iff for every term t,
t(x, . . . ,x) = x, that is, iff a global absorption law holds. (Here,
and below, we are displaying all the variables of the terms at hand.)
Such algebraic properties can be investigated using the equational
presentation of the theory. As an example, the theory for environ-
ments TEnv(V) and the various semilattice theories are affine.

A summary of the results appears in Figure 7; in any row,
all the conditions are equivalent in any model of MAIL, taking
the condition in the first column as universally quantified over
all ε′ such that ε′ ⊇ ε. Benton et al. [4–8] (Führmann [13, 14])
considered call-by-value analogues of the optimisations labelled by
B (respectively F) in Figure 7, albeit for particular combinations of
effects (respectively for a fixed monad); Führmann also showed the

2 Alex Simpson, private communication.
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equivalence of the two forms and the abstract side condition in his
setting.

The abstract conditions in Figure 7 use the following standard
categorical notions. The diagonal function δW : W → W ×W is

given by δ(w)
def
= 〈w,w〉. Let T be an inequational theory. Given

a continuous function f : V → W , we can lift it to a homomor-

phism (η ◦ f)† : FV → FW . We denote the underlying map by
Lf : |FV | → |FW |. The multiplication µ : |F|FW || → |FW | is
the underlying map of the homomorphism id† : F|FW | → FW .
The (left) strength, str : V × |FW | → |F(V ×W )|, is given by

λ〈v, w〉.(curry η)†(w)(v). Similarly we define the right strength,

str′ : |FV | × W → |F(V ×W )|. The two double strength

functions ψ, ψ̃: |FV | × |FW | → |F(V ×W )| are defined by

ψ = θ ◦ L str′ ◦ str and by ψ̃ = θ ◦ L str ◦ str′.
Note how Copy corresponds to a global idempotency law, and

how Swap corresponds to commutativity. Slight variations on these

two laws yield the Weak Copy3, and Weak and Isolated Swap
optimisations, which are new in the formal methods optimisation
literature. Also note the algebraic condition for Pure Hoist. It means
that Tε is either inconsistent, or the operations project one of their
arguments without effect.

Note too the two hoisting optimisations and compare them to
the structural optimisations dealing with effect operations (Fig-
ure 6). The simplicity of the latter over the former suggests that
the complications arise from the process of thunking rather than
abstracting over variables. This clean separation between thunks
and abstraction supports our use of CBPV.

Most (but, unfortunately, not all) of the optimisations can be
validated operation-wise:

Theorem 13. For each of the optimisations Discard, Pure Hoist,
and Hoist, the algebraic condition holds for a theory T iff for all
operations f : A it holds for the term t = f(λa.xa).

Analogously, for each of the various Swap optimisations, the

algebraic condition holds for T1
T1−−→ T

T2←−− T2 iff for each

f i :Σi
Ai, i = 1, 2, it holds for the terms t = f1(λa1.xa1) and

s = f2(λa2.xa2).

The theorem is proved by a straightforward induction over ε-
terms, demonstrating the benefits of the algebraic characterisation.
The theorem was used to obtain most of the examples column in
Figure 7. We can also use this it to deduce optimisation validity
modularly:

Corollary 14. For each algebraic condition for Discard, Pure

Hoist, and Hoist, if T 1,T 2 satisfy it, then so does T 1 + T 2.
Analogously, for each algebraic condition for the various Swap

optimisations, if T i
1

T
i
1−−→ T

T
j
2←−− T j

2 , for all i, j = 1, 2, satisfy it,

then so does T 1
1 + T 2

1 → T ← T
1
2 + T 2

2 .

Optimisation validity is inherited by super-theories:

Proposition 15. If T satisfies any of the algebraic conditions in
Figure 7, and if T ′ is any theory with Σ = Σ′ and (≤) ⊆ (≤′),
then T ′ satisfies the same condition.

Analogously, if T1
T1−−→ T3

T2←−− T2 satisfy the algebraic con-
dition for any of the various Swap optimisations, and if, further,

T ′
1

T
′
1−−→ T ′

3

T
′
2←−− T ′

2 are such that Σi = Σ′
i, Ti ⊆ T

′
i and for each

f ∈ Σi, Ti(f) = T
′
i(f), then T ′

1

T
′
1−−→ T ′

3

T
′
2←−− T ′

2 satisfy the same
algebraic condition.

For example, the semilattice theories are commutative — the
identity translations commute. Thus given two locations ℓ, ℓ′ in

3 Paul B. Levy, private communication.

memory with associated operations lookupℓ and updateℓ
′

v , the
trivial translations of TEnv(V)⊗TND, TND⊗TOW(V) into the theory
with two distinct memory cells and non-determinism, TGS(V) ⊗
TND ⊗ TGS(V), commute.

Note that each algebraic condition for Discard and Copy implies
that of Weak Copy. Similarly, the algebraic condition for Swap
implies that of Weak Swap, which implies that of Isolated Swap.

The notable exceptions to Theorem 13 are the Copy, Weak Copy
and Unique optimisations. For example, in the global state theory
TGS(2) both lookup and update are idempotent, but the term
lookup(λa.update0xa) is not idempotent. However, in practice,
we can use equational reasoning to establish them. For example,
the write-only state theory is relevant, because any term can be
rewritten to a single operation updatevx. As these are idempotent,
all terms satisfy the idempotency law.

We can use similar equational arguments to establish these
idempotency laws for theory combinations:

Theorem 16. Let T , T ′ be two relevant algebraic theories.

• If all Σ operations have arity 0, then T + T ′ is relevant.

• If all Σ operations have arity 1, then T ⊗ T ′ is relevant.

• If T is also affine, then T ⊗ T ′ is relevant.

The same is true replacing “relevant” by the Weak Copy charac-
terisation.

In practice, the relevant theories with which one usually tensors
are the lifting theory or with the read-only and write-only state
theories, and they all satisfy the conditions of this theorem.

Similarly, we can deduce the condition for the unique optimisa-
tion in the following case:

Proposition 17. Let T be an inequational theory. If every nullary
operation in Σ commutes with every Σ-operation, then T satisfies
the algebraic condition for the Unique optimisation.

5. Example Language

To demonstrate our results, we consider a non-trivial language.
Assume the memory has been partitioned into a finite set of dis-
joint regions [27] Reg. The set Reg is partitioned into three sub-
sets: read-only regions Reg

RO
; write-only regions Reg

WO
; and

read-write regions Reg
RW

. We denote by Reg
R

the read-able re-
gions Reg

RO
∪ Reg

RW
, and by Reg

W
the write-able regions

Reg
WO
∪Reg

RW
.

The MAIL signature in question Σ is given as follows. The
basic types Bsc are Char, Word, Str and Loc. The effect
operations |σ| and their arities are: Ω : 0, as required; input :
Char for terminal input; output : 1→ Char for terminal

output; raise : 0 for causing an exception; throw : 0→ Str
for causing an exception with an error message; rollback : 0
for causing a rollback exception; abort : 0→ Str for causing a
rollback exception with an error message; for all write-able regions
ρ ∈ Reg

R
, lookupρ : Word→ Loc, note that each region

consists of Loc-many locations; for all read-able regions ρ in
Reg

W
, updateρ : 1→ Loc×Word; and finally, ∨ : 2 for

non-deterministic choice. The effect sets E are given by all (finite)
effect subsets P (|σ|). Finally, the built-in constants κ we choose
are: ′c′ : Char for each ASCII character c; n for each 64-bit
number n; ′′s′′ for each character string s; l for each 64-bit memory
address ℓ. The resulting Σ is indeed simple.

The Alg-CBPV signature Σ♮ is
〈

〈Bsc, |σ| ,Ω, κ〉 , ar, A−

〉

.

The chosen Σ♮-Alg-CBPV model M interprets the basic types as
follows: ⟦Char⟧ is 2

8, the usual ASCII encoding; ⟦Word⟧ is

2
64, which we also denote by V; ⟦Str⟧ is ⟦Char⟧∗, the set of

finite ⟦Char⟧ sequences; and ⟦Loc⟧ is 2
64. The theory T is given

10 2011/11/16



by [19]:

Th{raise,throw}∅+ (

T
⊗

ρ∈RegRO,ℓ

Env(V) ⊗ T
⊗

ρ∈RegWO,ℓ

OW(V) ⊗ T
⊗

ρ∈RegRW,ℓ

GS(V) ⊗

(Th{rollback,abort}∅+Th{input}∅+

Th{output}∅+ (TND ⊗ TΩ)))

where the lookup operations in the signature in the 〈ρ, ℓ〉-th com-

ponent of the folded tensor T
⊗

ρ∈RegRO

Env(V) are tagged with ρ and ℓ,

i.e. lookup
ρ
ℓ , and similarly for the other folded tensors. Finally, the

constants are given the obvious interpretations.
By Theorem 12, we have an axiomatic restriction modelM♯ for

the natural modular axiomatisation of T . Validating optimisations

in this model yields valid optimisations for Σ♮-Alg-CBPV.
For each optimisation o in {Discard, Pure Hoist, Hoist}, we

define a set ζo ⊆ |σ| of the operations that satisfy its algebraic
condition:

ζDiscard def
= {∨, lookupρ | ρ ∈ Reg

R
} ζPure Hoist def

= ∅

ζHoist def
= {raise, throw, abort, rollback,Ω}

By Theorem 13 we obtain the following condition:

Proposition 18. For each optimisation o in {Discard, Pure Hoist,
Hoist}, if ε ⊆ ζo then o is valid in the theory Tε ofM♯.

Analogously, for each o in {Swap, Weak Swap (WSwap), iso-
lated swap (ISwap)} and for each op ∈ |σ| define the set ζo(op) of
effect operations that o-commute with op. For Weak Swap, op re-
places t in the algebraic condition. Note that because Swap implies

Weak Swap, which implies Isolated Swap, we have ζSwap(op) ⊆
ζWSwap(op) ⊆ ζ ISwap(op). These sets are given in Figure 8.

From Theorem 13 we can deduce the validity of swapping:

Proposition 19. Let o be one of the various Swap optimisations.
Let ε1, ε2 be two effect sets. If ε2 ⊆

⋂

op∈ε1
ζo(op) then the

optimisation o is valid for Tε1 → Tε1∪ε2 ← Tε2 .

We should note that despite our brute force method of examin-
ing 200 pairs of effect operations, we are still exponentially better
off than trying to exhaust the space of 220 possible pairs ε1, ε2. It is
worthwhile to wonder whether mechanised assistance is possible.
It would also be good to be able to decide exactly which of the 220

possible optimisations is valid in the benchmark model.

Theorem 20. Let ε ⊆ |σ|. If input, update,∨ /∈ ε and for all ρ
in Reg

RW
, {lookupρ, updateρ} * ε, then Tε validates the Copy

optimisation.

Note that the premise of the theorem and the structure of the
axiomatic restriction model guarantees that Tε is of the form:

Th{raise,throw}∅+(T
⊗

Env(V)⊗T
⊗

OW(V)⊗(Th
{rollback,abort}∅+TΩ))

where each of the theories may be omitted. Note that all of them
are relevant. Repeated application of Theorem 16 shows the com-
bination’s relevance.

The optimisation Weak Copy is treated similarly:

Theorem 21. Let ε ⊆ |σ|. If input, output /∈ ε and for all ρ in
Reg

RW
, {lookupρ, updateρ} * ε, then Tε validates the Weak

Copy optimisation.

To conclude our example, we treat the Unique optimisation
using Proposition 17:

Theorem 22. Let ε ⊆ |σ|. If ε ∩ {Ω, raise, rollback} = {op}
and ε ⊆ ζSwap(op), or if the intersection is empty, then Tε validates
the Unique optimisation.

6. Related Work

Filinski used M3L [10, 11] to investigate effect reification [12]. Its
earlier call-by-value versions had a denotational semantics and in-
spired our CBPV MAIL. Marino and Millstein [28] developed a tech-
nique to derive type and effect frameworks based on the notions
of redexes and contexts [48]. These frameworks are parameterised
by two functions check and adjust. They applied their technique
to a fixed ML-like, call-by-value language with recursion, excep-
tions and higher-order dynamic allocation, capturing many existing
effect systems, mostly more general than the Gifford-style. They
gave a mechanically checked soundness proof of their effect sys-
tem, with respect to a suitable operational semantics.

Atkey applied permission-parameterised monads to the seman-
tics of type and effect systems [2, 3] more general than Gifford-
style ones. His parameterised monads can be generated by a notion
of equational theory in which the signature assigns input and out-
put permissions to operations, thereby connecting operations and
effects (qua permissions). He also established relations to standard
monadic semantics analogous to Theorems 9 and 12.

7. Conclusions and Further Work

We have given a theory of Gifford-style effect systems, generalis-
ing and unifying existing work. The algebraic approach provides a
valuable general point of view, resulting in: the connection between
effect operations and effect sets; the conservative and the axiomatic
restriction models; the relation between effect-annotated semantics
and standard algebraic semantics; optimisation classification and
discovery of new optimisations; criteria for the validity of abstract
optimisations; and methods to derive the validity of optimisations
for combinations of effects modularly. Rather than having to pro-
ceed from case to case by analogy, we hope that the generality of
our approach will provide a first step on the way to obtaining a
scientifically-based engineering methodology.

The use of CBPV enabled a systematic account that highlights
the interplay between programming constructs and effects. Cate-
gorical language greatly helped the organisation of this work. It
was also crucial in seeing the connection with Führmann’s work,
and unifying it with Benton et al.’s. Finally, the example language
demonstrated the ease of application of the theory to a language
equipped with an algebraic semantics. Note too that model con-
structions are not ad hoc: they come for free given only the alge-
braic theory of the effects at hand.

Further work abounds. It would be good to resolve Conjec-
ture 10, and to establish means to decide the validity of optimi-
sations in the benchmark model. It is also important to include ef-
fect handlers [37, 40] such as exception handlers and rollback in
the language. Pretnar and Plotkin describe a β rule for handlers,
and a rule for the interaction of algebraic operations and handlers.
These rules have many consequences in their logic, and will surely
be valid in our setting. There may also be useful abstract optimisa-
tions involving handlers, possibly unifying existing accounts [4].

Effect reconstruction is of immediate importance. It should be
possible to derive general algorithms for type and effect annotation.
Our semantics can then be used to give semantics to such programs.
Levy’s translations of call-by-value and call-by-name into CBPV

could then be used to deduce general effect systems for these
paradigms, generalising and unifying existing work.

Notions of locality, particularly local state, are very important.
It may be possible to make use of work on the algebraic treatment
of locality, e.g., [29, 34, 42], to obtain a more general optimisation
theory. This should enable the work of Benton et al. on dynamic
allocation [8] to be incorporated. (Incorporating higher-order store
[6] would require solving recursive domain equations [1, 25].)
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op ζSwap ζWSwap \ ζSwap ζISwap \ ζWSwap |σ| \ ζISwap

Ω Ω, lookupρ, updateρ, ∨ ∅ ∅ input, output, raise, throw, rollback, abort

input lookupρ, updateρ ∨ input Ω, output, raise, throw, rollback, abort

output lookupρ, updateρ ∨ output Ω, input, raise, throw, rollback, abort

raise lookupρ, raise, ∨ ∅ ∅ Ω, input, output, throw, rollback, abort, updateρ

throw lookupρ ∨ ∅ Ω, input, output, raise, throw, rollback, abort, updateρ

rollback lookupρ, updateρ, rollback, ∨ ∅ ∅ Ω, input, output, raise, throw, abort

abort lookupρ, updateρ ∨ ∅ Ω, input, output, raise, throw, rollback, abort

lookupρ0
Ω, input, output, raise, throw, abort,

rollback, abort, lookupρ, updateρ 6=ρ0 , ∨
∅ updateρ0 ∅

updateρ0
Ω, input, output, rollback, abort,

lookupρ 6=ρ0 , updateρ 6=ρ0 , ∨
lookupρ0 ∅ raise, throw, updateρ0

∨
Ω, raise, throw, rollback, abort, lookupρ,

updateρ, ∨
∅ input, output ∅

Figure 8. Swap Sets

In a different direction, the distributive combination of theo-
ries [17] (used for combining ordinary and probabilistic compu-
tation) should be investigated. Also, our theory should be extended
to include non-algebraic effects, such as continuations [20].

Our arities are required to be ground, finite and discrete. The
finiteness and discreteness conditions can be relaxed by using,
respectively, infinitary (in)equational theories [39]; and enriched
Lawvere theories [38]. Our treatment of the finite discrete case
exploited inequational logic; in the infinitary, enriched case, cor-
responding proof theories are needed [32]. Generalising arities to
non-ground types may involve recursive domain equations, as in
the hypothesised treatment of higher-order store.

The logic we used for our optimisations is a simple equational
logic — we have only considered equations between terms. It
seems straightforward to devise a richer effect-dependent counter-
part to Plotkin and Pretnar’s logic [36, 40].

Additional work is needed to distill the general account into
methodologies. In particular, it is desirable to reproduce the ex-
ponential improvement in operation-wise validation for the other
optimisations. Also, machine assistance and model-checking tools
could alleviate the repetitive burden of operation-wise validation.

We conjecture that Benton et al.’s logical relations method can
be related to the conservative restriction model. Our approach is de-
notational; it would be interesting to devise an operational account
[22, 33]. A precise relationship between our theory and Atkey’s
is in order, particularly with his parameterised monads. Finally it
would be good to go beyond Gifford-style, e.g., allowing effect
traces, and to account for parallelism, as in Gifford’s work [27].
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