
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Precise exceptions in relaxed architectures
Ben Simner

University of Cambridge

UK

Ben.Simner@cl.cam.ac.uk

Alasdair Armstrong

University of Cambridge

UK

Alasdair.Armstrong@cl.cam.ac.uk

Thomas Bauereiss

University of Cambridge

UK

Thomas.Bauereiss@cl.cam.ac.uk

Brian Campbell

University of Edinburgh

UK

Brian.Campbell@ed.ac.uk

Ohad Kammar

University of Edinburgh

UK

Ohad.Kammar@ed.ac.uk

Jean Pichon-Pharabod

Aarhus University

Denmark

Jean.Pichon@cs.au.dk

Peter Sewell

University of Cambridge

UK

Peter.Sewell@cl.cam.ac.uk

Abstract
To manage exceptions, software relies on a key architectural guar-

antee, precision: that exceptions appear to execute between instruc-

tions. However, this definition, dating back over 60 years, funda-

mentally assumes a sequential programmers model. Modern ar-

chitectures such as Arm-A with programmer-observable relaxed

behaviour make such a naive definition inadequate, and it is unclear

exactly what guarantees programmers have on exception entry and

exit.

In this paper, we clarify the concepts needed to discuss excep-

tions in the relaxed-memory setting – a key aspect of precisely

specifying the architectural interface between hardware and soft-

ware. We explore the basic relaxed behaviour across exception

boundaries, and the semantics of external aborts, using Arm-A as

a representative modern architecture. We identify an important

problem, present yet unexplored for decades: pinning down what

it means for exceptions to be precise in a relaxed setting. We de-

scribe key phenomena that any definition should account for. We

develop an axiomatic model for Arm-A precise exceptions, tooling

for axiomatic model execution, and a library of tests. Finally we

explore the relaxed semantics of software-generated interrupts, as

used in sophisticated programming patterns, and sketch how they

too could be modelled.

1 Introduction
Hardware exceptions (and their many variants: interrupts, traps,

faults, aborts, etc.) provide support for many exceptional situa-

tions that systems software has to manage. This includes explicit

privilege transitions via system calls, implicit privilege transitions

from trappable instructions, inter-processor software-generated

interrupts, external interrupts from timers or devices, recoverable

faults like address translation faults, and non-recoverable faults

like memory error correction faults.

To confidently write concurrent systems code that handles ex-

ceptions, e.g. mapping on demand at page faults, programmers

,
2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

need a well-defined and well-understood semantics. The definition

given in modern architectures (e.g. in the current Arm-A documen-

tation) is basically unchanged since the IBM System/360, roughly

as Hennessy and Patterson [29] state: “An exception is imprecise if
the processor state when an exception is raised does not look exactly
as if the instructions were executed sequentially in strict program
order”. However, on pipelined, out-of-order processors with ob-

servable speculative execution, exceptions have subtle interactions

with relaxed memory behaviour which have not previously been

investigated.

1.1 Contributions
In this paper, we investigate the relaxed concurrency semantics of

exceptions on modern high-performance architectures. We focus

on the Arm-A application-profile architecture as a representative

example, although we expect that the challenges we describe also

appear in other, similarly relaxed, architectures. This work involved

detailed discussions with Arm senior staff, including the Arm Chief

Architect and an Arm Generic Interrupt Controller (GIC) expert.

Our contributions are:

• We clarify the concepts and terminology needed to discuss

exceptions in relaxed-memory executions (§2).

• We explore the relaxed behaviour of exceptions: out-of-

order and speculative execution, and forwarding across

exception entry/exit boundaries (§3). This is based on dis-

cussions with Arm and testing of several processor imple-

mentations, using a test harness for hardware testing of

exceptions, and a library of hand-written litmus tests.

• We explore the semantics of memory errors (§4). In Arm-A,

these can generate external aborts. Some implementations,

including server designs, may exhibit synchronous external
aborts. Such implementations rule out load-buffering (LB)

relaxed behaviour, which substantially curtails how relaxed

observable behaviour is.

• We develop an axiomatic model for Arm-A precise excep-

tions (§5). We extend Isla [12] to support both ISA and

relaxed-memory concurrency aspects of exceptions, and

we use it to evaluate the axiomatic model on tests.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

, Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• We identify and discuss the substantial open problem of

what it means for exceptions to be precise in relaxed set-

ting (§6). We characterise key properties that a definition

should respect, and highlight the challenge of giving a

proper definition of precision when relaxed behaviour is

allowed across exception boundaries.

• Finally, we explore a significant use-case of exceptions that

benefits from the clarification of their interaction with re-

laxed memory: the relaxed semantics of software-generated

interrupts as used for sophisticated low-cost synchronisa-

tion, e.g. in Linux’s RCU [45] and Verona (§7). We sketch

this in an axiomatic model.

This is an essential part of the necessary foundation for con-

fidently programming systems code, building on previous work

that has clarified ‘user’ relaxed concurrency [1–3, 6–8, 12, 19, 24–

28, 31, 49, 50, 52–54, 56, 59] and complementing recent work on the

systems aspects of instruction fetch [58] and virtual memory [4, 57].

It helps put processor architecture specifications such as Arm-A on

an unambiguous footing, where the allowed behaviour of systems-

code idioms can be computed from a precise and executable-as-test-

oracle definition of the architecture.

1.2 Scope and limitations
Our models cover important use cases of exceptions, but there

remain several questions to be addressed by future work. We do

not give semantics to imprecise exceptions, as it is unclear how to

do so at the architectural level.

For our specific modelling of Arm: we do not define the be-

haviour of ‘constrained unpredictable’, and merely flag when it is

triggered. Clarifying it will require substantial extensive discussions

with Arm architects, likely affecting the wording in the architec-

tural specifications, beyond the scope of this paper. We do not try

to precisely model the relaxed behaviour of system registers, but

merely sufficient conditions for conservative use cases in the con-

text of exceptions (§3.1). We do not model switching between Arm

FEAT_ExS modes (§3.5): they are supported architecturally, but are

not commonly implemented. We rely on a specific configuration

to illustrate the use of interrupts for synchronisation (§7), with-

out detailed modelling of the Arm Generic Interrupt Controller

(GIC), or other system-on-chip (SoC) aspects. The GIC is a complex

hardware component, with a 950-page specification [10, H.b], and

modelling it in full would be a major project in itself. This work

is validated by substantial discussion and hardware testing, but

more extensive testing on more devices is always desirable; we

hope that our work will spur such additional testing on devices

not available to us. Finally, while we believe our models correctly

capture the Arm architectural intent, and that it gives a solid basis

for programmers, this paper is not an authoritative definition of

the architecture, which is in any case subject to change.

2 Arm-A architectural concepts for exceptions
We refine the Arm-A architectural concepts for exceptions.

2.1 Exception taxonomy
Arm-A defines multiple kinds of exception [9, D1.3.1, p6060]: Syn-
chronous exceptions (supervisor/hypervisor calls, traps, data/instruc-
tion, page faults, etc.) and interrupts (IRQ/FIQ from processors/pe-

ripherals/timers and system errors).

The preferred return address of synchronous exceptions has

some architecturally defined relationship with the instruction that

caused them, and they are precise. Their precision means roughly

that synchronous exceptions are observed at particular points in

the instruction stream, and so can use the preferred return address

to resume executing it after handling the exception. We return to

precision below.

All interrupts are precise apart from SError (System Error) inter-

rupts, for which it is implementation-defined (per-kind) whether

they are precise. SError interrupts arise from external system errors

that may or may not be recoverable. For example, an unrecover-

able imprecise SError may be generated by late detection of an

uncorrectable memory error correction error. Exceptions stemming

from such late detection of uncorrectable memory errors are called

external aborts. In §3, we discuss how the mechanism an implemen-

tation uses to report external aborts can rule out or allow relaxed

behaviour.

2.2 Basic architectural machinery for
exceptions

In Arm-A, when an exception is taken, execution jumps to the

exception vector, an offset from the appropriate vector base ad-

dress register (VBAR) value depending on the kind of exception.

The appropriate exception syndrome register (ESR), fault address

register (FAR), and exception link register (ELR) are written with

information about the cause and the preferred return address. In

some cases, the exception level (EL) register value, ranging in in-

creasing privilege from 0 to 3, is also changed. Exception handlers

typically use ERET to return from an exception, which restores

some processor state and branches to the address in the appropriate

ELR. Most of these system registers (VBAR, ESR, etc.) are banked.

2.3 Instructions and instruction streams
One often thinks of processors as executing instructions in some

instruction sequence, and common terminology is based on those

two concepts. For example, the Armmanual has around 60 instances

of instruction stream or execution stream. However, to account for

relaxed behaviours and exceptions, we must refine these concepts.

2.3.1 From instructions to fetch-decode-execute instances. Excep-
tions can arise at multiple points within the fetch-decode-execute

cycle, including during the fetch and decode, when there is no

‘instruction’. For Armv9.4-A, much of this is captured in an Arm

top-level function written in the Arm Architecture Specification

Language (ASL).

We have then integrated this into Sail-based tooling to obtain an

executable-as-test-oracle semantics of the sequential ISA aspects

of Armv9.4-A with exceptions (§5.1). A highly simplified outline of

a single-instruction slice of the (400k line) instruction semantics is:

function __TopLevel() =

// in TakePendingInterrupts:

2

https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/fetch.sail#L343
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/interrupts.sail#L220

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Precise exceptions in relaxed architectures ,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Top. The tree of (partially) executed FDX instances
at one time, in hardware or operational model execution. Bot-
tom. The sequence of architecturally executed FDX instances
in a completed execution.

if IRQ then AArch64_TakePhysicalIRQException()

if SE then AArch64_TakePhysicalSErrorException(...)

// in AArch64_CheckPCAlignment:

if pc[1..0] != 0b00 then AArch64_PCAlignmentFault()

// in __FetchInstr:

opcode = AArch64_MemSingle_read(pc, 4) // read memory

// in __DecodeA64:

match opcode

[1,_,1,1,1,0,0,1,0,1,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,
,,_,_] =

// the semantics for one family of instructions,

// including loads LDR Xt,[Xn]

// execute_aarch64_instrs_memory_single_general_

// immediate_signed_post_idx(n,t,...)

let address = X_read(n, 64) // read register n

let data : bits('datasize) = // read memory

Mem_read(address, DIV(datasize,8))

// write register t

X_set(t, regsize) = ZeroExtend(data, regsize)

Executing this semantics may lead to one or more kinds of ex-

ception, calling the ASL/Sail function AArch64_TakeException().

This function writes the appropriate values to registers, e.g. com-

puting the next PC, exception level, etc. and terminates this

__TopLevel() execution. So instead of ‘instruction instances’, we

refer to fetch-decode-execute instances (FDX instances), a single

execution of __TopLevel().

2.3.2 Fetch-decode-execute trees and streams. One must relate the

out-of-order speculative execution of hardware implementations

and the architectural definition of the allowed behaviours. We will

use the following concepts, well-understood when modelling re-

laxed memory without exceptions.

At any instant, each core may be processing, out-of-order and

speculatively, many instructions (really, FDX instances) from its

hardware thread. Partially executed instances are restarted or dis-

carded if they would violate the intended semantics (e.g. mispre-

dicted branch).

One can visualise the state of a single core abstractly as a tree

of partially and completely executed instances, as in Fig. 1 (top).

Abstract-microarchitectural operational models use this abstrac-

tion [24, 25, 28, 50, 52, 53]. We depict the retired (committed) FDX

instances as solid dark green, and partially/tentatively executed

Architecturally executed An instruction is architec-

turally executed only if it would be executed in a simple

sequential execution of the program. [...]

Simple sequential execution The behavior of an imple-

mentation that fetches, decodes and completely executes

each instruction before proceeding to the next instruction.

Such an implementation performs no speculative accesses

to memory, including to instruction memory. The imple-

mentation does not pipeline any phase of execution. In

practice, this is the theoretical execution model that the ar-

chitecture is based on, and Arm does not expect this model

to correspond to a realistic implementation of the architec-

ture.

Architecturally executed A candidate execution can be

architecturally executed if it is composed of a sequence

of FDX instances for each thread that together satisfy the

Arm concurrency model [extended to cover exceptions, as

described here, and other systems phenomena], starting

from the machine initial state.

Figure 2: Arm prose specification [9, Glossary, p14749] (top)
and our suggested rephrasing (bottom).

in-flight instances as light green. The arrows depict program order.

Committed instances can be program-order after in-flight instances,

and non-committed instances may need to be restarted. Eventually

all FDX instances for this hardware thread will be either committed

or discarded, e.g. as in Fig. 1 (bottom). These are the architecturally
executed FDX instances. The architecture definition, and any formal

semantics thereof, have to define which such sequences are allowed

for each thread. This definition includes the register content; mem-

ory read values; and their relationships with other threads, as deter-

mined by the relaxed concurrency model. Axiomatic concurrency

models, e.g. [1–3, 6–8, 12, 19, 26, 27, 31, 54, 56, 59], use candidate

executions containing the events just from these architecturally

executed instances.

The Arm prose specification in Fig. 2 (top) previously attempted

to capture the relationship between implementation execution (out

of order and speculative) and the architectural definition of allowed

behaviour in terms of a notion of “simple sequential execution”.

As the prose says, simple sequential execution does not hold for

the intended relaxed-memory architecture. We propose a more

correct rephrasing that allows for exceptions and other systems

phenomena in Fig. 2 (bottom).

Fig. 3 depicts a tree of instances involving exception entry (svc)

and return (eret). Arm-A allows implementations to observe the

exception handling instances as executing before program-order

previous instances have been retired, and similarly exception return.

Exception entry and return may never be observed as starting

to execute speculatively, however, and so the three speculative

branches may not observe exception entry or return instances.

Precision must account for these allowed and prohibited relaxed

behaviours.

3

https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/v8_base.sail#L34286
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/fetch.sail#L194
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/decode_end.sail#L85
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/instrs64.sail#L32819
https://github.com/rems-project/sail-arm/blob/19566bdb8615ae92ceea4b2a0e2bfbf59f5fbf0c/arm-v9.4-a/src/instrs64.sail#L32819

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

, Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

svc eret

Figure 3: The tree of partially and completely executed FDX
instances with exceptions, in hardware or operational model
execution. Instructions may execute out-of-order across ex-
ception boundaries, requiring a modern definition for preci-
sion.

3 Relaxed behaviour of precise exceptions
Exceptions change the control flow and processor context, that

is, the collection of system and special registers which control

the execution of the machine, such as the current exception level

(PSTATE.EL), masking of interrupts (PSTATE.{D,A,I,F}), processor

flags, etc. However, changes to the context may not take effect imme-

diately, and so, to ensure that program-order-later instructions see

such changes, exceptions usually come with context synchronisa-

tion. It is this context synchronisation which imposes ordering, and

we show how, without such context synchronisation, we observe

reordering across exception boundaries. For this reason, exceptions

are usually context-synchronising on Arm.

There are many things that can trigger exceptions. The simplest

way is to use an ‘exception-generating instruction’ such as a system

call (on Arm, the SVC instruction). While exceptions like interrupts

and page faults are more common, they may come with extra syn-

chronisation. Therefore, SVCs provide a baseline for precision, and

we use them in our exploration of the behaviour of exceptions in

the remainder of this section; we return to discuss other exceptions

later on.

In this section, we explain relaxed behaviour of precise excep-

tions through litmus tests, the usual standard for succinctly cata-

loguing the relaxed behaviours allowed by an architecture [7, 8, 12].

Litmus tests are small programs capturing specific software pat-

terns or hardware mechanisms, whose outcome depends on some

kind of out-of-order execution.

Precise exceptions do not change the memory model between

exception boundaries, and so the interesting questions concern

out-of-order execution across exception boundaries.

We will talk about context synchronisation in detail (§3.1), ex-

plore the baseline out-of-order execution across exception bound-

aries (§3.2), then the stronger behaviour of specific types of excep-

tions (§3.3), touch on how the instruction semantics needs to be

adapted (§3.4), and finally discuss a corner case disabling context

synchronisation (§3.5).

3.1 Context-synchronisation
Updates to the context, such as writes to system registers, need

synchronisation to be guaranteed to have an effect. We do not

model the behaviour of such context-changing operations when

such synchronisation is not performed. Instead, we merely identify

when and how exceptions are context-synchronising, and note that

this has a knock-on effect on memory accesses.

Architecturally, a context synchronisation event guarantees that

no instruction program-order-after the event is observably fetched,

decoded, or executed until the context-synchronising event has

happened. A simple microarchitectural implementation for context

synchronisation is to flush the pipeline: restarting all program-

order-later instances once the context-synchronising effect occurs.

More complex implementations may be more clever, as long as they

preserve the semantics.

Software can explicitly generate context synchronisation events

by issuing an Instruction Synchronisation Barrier (ISB). Context

synchronisation can also happen implicitly, for example on excep-

tion entry and exit. This is the case in Arm, except in a rare use

case we return to in §3.5.

The effect of context synchronisation events in exception bound-

aries is that any instance after the boundary has an ISB-equivalent

dependency on the instances before the boundary. This mechanism

implies the following fundamental invariant: context synchronising
exceptions are never taken speculatively, and it limits speculation

to the same well-understood extent as ISB limits speculation. This

invariant has interesting interactions with external aborts, which

we discuss in §4.

3.2 Relaxed behaviours
In this section, we explore the relaxed behaviour of exceptions,

with a selection of litmus tests from our larger suite of 61 hand-

written tests. For each test, we include whether the behaviour is

allowed in our understanding of the architectural intent; the rele-

vant experimental results when available (labelled hw-refs); and a

candidate execution graph. When available, the experimental hard-

ware results (obtained by extending the testing harness of Simner

et al. [57]) report the frequency of observation on the following

implementations, respectively a Raspberry Pi 3B+ (Arm Cortex-A53

r0p4), a Raspberry Pi 4B (Arm Cortex-A72 r0p3), a Raspberry Pi

5 (Arm Cortex-A76 r1p4), and an ODROID N2+ (Arm Cortex-A73

r0p2). The latter is a big.LITTLE architecture; our results are from

the ‘big’ A73 cores. We mark behaviours as allowed/disallowed

based on discussions with Arm architects.

3.2.1 Out-of-order execution across exception boundaries. Excep-
tion boundaries do not act as memory barriers, so loads and stores

may be executed out-of-order over an exception entry or an excep-

tion exit or the composition of both (Figure 4).

3.2.2 Speculative exception entry or return. The invariant ‘context
synchronising exceptions cannot be taken speculatively’ imposes

the same kind of barrier as a ctrlisb dependency would impose

between program-order-previous instances and the instances in

the handler. The control dependency is due to the branching to

the handling code, and the ISB dependency is due to context syn-

chronisation. As a consequence, the two behaviours in Figure 5

are forbidden. On architectures that allow the FEAT_ExS extension,

they would be allowed when the exception entry/exit is not context

synchronising, i.e., when the corresponding EIS/EOS bit is cleared.

This mechanism also explains why we do not observe load-load

reordering on the Raspberry Pi devices, but we do observe them on

the ODROID-N2+ (exhibited by the test MP+dmb+svc which can be

found in the supplementary material). These machines exhibit the

same behaviour as they would for the corresponding MP+dmb+isb

behaviour from previous work.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Precise exceptions in relaxed architectures ,

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

MOV X0,#1
STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0
SVC #0
LDR X2,[X3]

Thread 1
MOV X0,#1
STR X0,[X1]
ERET

T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

SB+dmb.sy+eret AArch64

Allowed: 0:X2=0, 1:X2=0

hw-refs param-refs
RPi 3B+ 162K/33M ExS A
RPi 4B 85K/12M SEA𝑅 A
RPi 5 2.0K/11M SEA𝑊 F

ODROID N2+ (big) 38/17M SEA𝑅+𝑊 F

W x=1a:

R y=0b:

Thread 0
W y=1c:

R x=0d:

Thread 1

dmb eretfrfr

Figure 4: Reads and writes may be executed out-of-order
across exception entry, exit, or even both. This shows execut-
ing a read out-of-order across exception entry+exit.

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
CBNZ X0,LC00
LC00:
SVC #0

Thread 1
LDR X2,[X3]
T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrlsvc AArch64

Forbidden: 1:X0=1, 1:X2=0

hw-refs param-refs
RPi 3B+ 0/1M ExS A
RPi 4B 0/19M SEA𝑅 F
RPi 5 0/11M SEA𝑊 F

ODROID N2+ (big) 0/18M SEA𝑅+𝑊 F

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb ctrlsvcrffr

Figure 5: Context synchronising exception entry (and re-
turns) are not executed speculatively.

3.2.3 Privilege level. The privilege level (PSTATE.EL) has little to no
additional effect on the behaviours we present: their allowed/forbid-

den status remains the same whether the privilege goes up/down in

entry/exit or remains the same. The one exception to this principle

is the effect a privilege change has on non-faulting translation table

walks. A non-faulting translation walk for an instance program-

order-before a privilege-changing exception entry from ELnmay be

reordered with the entry, but would then also be reordered with ev-

ery subsequent exception boundary until the privilege level returns

to ELn. Explaining this case in full detail would require substantial

details of Arm’s virtual memory architecture [57], and we leave it

to future work.

3.2.4 Forwarding writes. It is permitted for writes to be forwarded

from a store to a read across exception entry and return

(SB+dmb+rfisvc-addr in Figure 6).

3.2.5 Dependency through system registers. Where exceptions are

taken to and returned to are part of the context, and must be read

by exception taking and returning, and so they can be involved in

register dependency chains. Here, we do not characterise the gen-

eral effect of such dependencies, but focus on the effect exceptions

have on them.

MOV X0,#1
STR X0,[X1]
DMB SY
LDR X2,[X3]

Thread 0
MOV X0,#1
STR X0,[X1]
SVC #0

Thread 1
LDR X2,[X3]
EOR X6,X2,X2
LDR X4,[X5,X6]

T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=y, 1:X5=x

SB+dmb.sy+rfisvc-addr AArch64

Allowed: 1:X0=1, 1:X2=0

hw-refs param-refs
RPi 3B+ 839K/21M ExS A
RPi 4B 2.9K/106M SEA𝑅 A
RPi 5 135K/39M SEA𝑊 F

ODROID N2+ (big) 18K/16M SEA𝑅+𝑊 F

W x=1a:

R y=0b:

Thread 0
W y=1c:

SVCd:

R y=1e:

R x=0f:

Thread 1

dmb po

po

addr

fr

rf

fr

Figure 6: Forwarding into a non-speculative handler.

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
MRS X4,ESR_EL1
EOR X5,X0,X0
ADD X5,X4,X5
MSR ESR_EL1,X5
SVC #0

Thread 1
LDR X2,[X3]
T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:PSTATE.EL=0b1, 1:X1=y,

1:X3=x

MP.EL1+dmb.sy+dataesrsvc AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb dataesrsvcrffr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
SVC #0
LDR X2,[X3]

Thread 1
LDR X0,[X1]
MRS X4,ELR_EL1
EOR X5,X0,X0
ADD X5,X4,X5
MSR ELR_EL1,X4
ERET

T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+ctrlelr AArch64

Forbidden: 1:X0=1, 1:X2=0

hw-refs param-refs
RPi 3B+ 0/22M ExS A
RPi 4B 0/108M SEA𝑅 F
RPi 5 0/39M SEA𝑊 F

ODROID N2+ (big) 0/18M SEA𝑅+𝑊 F

W x=1a:

W y=1b:

Thread 0
R y=1c:

R x=0d:

Thread 1

dmb ctrlelrrffr

Figure 7: System registers and context synchronisation

Dependencies on system register accesses compose with order-

ing from context synchronisation events to program-order-later

instructions. Test MP.EL1+dmb+dataesrsvc in Fig. 7 demonstrates

that a write to the system register ESR that depends on a read forbids

reordering this read across the boundary, even though resolving

the dependency does not affect the exception.

The ELR register is a special-purpose register, and is therefore

‘self-synchronising’. Therefore, writes into the ELR do not need

context synchronisation to guarantee that they are seen by program-

order-later instructions, and this means that dependencies into the

ELR are preserved (see Fig. 7).

This has two related subtleties, and is currently under investiga-

tion by Arm. The Software Thread ID Register (TPIDR) is a system

register in which the operating system can store thread identifying

information, but has no relevant indirect effects. Further testing

and discussions may clarify whether it forbids reordering. While

dependencies through special-purpose registers are preserved, con-

text synchronisation does not necessarily need to wait for those

writes, and so these dependencies do not necessarily pass to instruc-

tions after context synchronisation (in contrast to system register

writes).

3.2.6 Ordering from asynchronous exceptions. Asynchronous ex-
ceptions cannot be taken speculatively. Therefore, all instructions

program-order-after an asynchronous exception happen after that

exception.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

, Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
MOV X5,#0
/ segfault
LDR X4,[X5]

Thread 1
LDR X2,[X3]
T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

MP+dmb.sy+fault AArch64

Forbidden: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0
R y=1c:

Pagefaultd:

R x=0e:

Thread 1

dmb po

po

rf

fr

MOV X0,#1
STR X0,[X1]
DMB SY
MOV X2,#1
STR X2,[X3]

Thread 0
LDR X0,[X1]
L:
NOP

Thread 1
LDR X2,[X3]
T1 Handler

Initial state: *x=0, *y=0;

0:X1=x, 0:X3=y; 1:X1=y, 1:X3=x

interrupt at=L

MP+dmb.sy+int AArch64

Allowed: 1:X0=1, 1:X2=0

W x=1a:

W y=1b:

Thread 0
R y=1c:

TakeInterruptd:

R x=0e:

Thread 1

dmb po

po

rf

fr

Figure 8: Different exception kinds can have different be-
haviour.

3.3 Exception-specific mechanisms
Some exceptions on some implementations involve additional mech-

anisms. For example, when an implementation supports the En-

hanced Translation Synchronisation (FEAT_ETS2), the translation-

table-walks which generate translation faults (pagefaults) gain

additional ordering from program-order-previous instances. Fig-

ure 8 compares the a Message-Passing test involving a page-fault

(MP+dmb.sy+fault, forbidden) and the same shape involving an

SVC exception (MP+dmb.sy+int, allowed).

The architectural rationale for FEAT_ETS2 is to prevent spuri-

ous faults from old translation walks. Such faults cause difficul-

ties for software and require software to introduce many barriers.

The FEAT_ETS2 extension requires hardware to always put a bar-

rier before a translation fault. Microarchitecturally, this can be by

restarting faulting instructions when they become non-speculative.

Implementations are required to support FEAT_ETS2 from Armv8.8-

A onwards, and we model it. We are aware the specification of

additional mechanisms per exception-kind is an active area for

Arm, and we hope to extend the model to match future changes in

the architecture.

3.4 Exceptions and the intra-instruction
semantics

Wherever possible, we want to interpret the intra-instruction ASL

ordering as preserved, both for conceptual simplicity, memory-

model tool execution, and reasoning. This has previously been

possible except in a few specific cases that are inherently concur-

rent: instructions that do multiple accesses, and CSEL, CAS, SWAP,

etc. Exceptions introduce a new interesting case for instructions

that do a register writeback concurrently with a memory access.

For example, STR (immediate) has a “Post-index” and a “Pre-index”

versions [9, C6.2.365, p2442]. The post-index STR Xt, [Xn], #8,

for example, stores the value in Xt to the address initially in reg-

ister Xn and adds 8 to Xn. The Arm ARM ASL for STR puts that

register write at the end, after the memory access has completed.

The architectural intent is that program-order-later instances that

depend on Xn can go ahead early, e.g. before the data in register Xt

is available to be written to memory. The relevant litmus tests have

been observed (on an ODROID-N2+, with 2 Cortex A53 cores plus

4 Cortex A73 cores) [30].

Previous work captured this allowed by having the register write-

back before the memory access in the instruction semantics. How-

ever, exceptions require more care: when the memory access gener-

ates an exception, the writeback register should appear unchanged

to instances after the exception boundary.

3.5 Disabling context synchronisation
On Arm, there is an optional feature, FEAT_ExS, which provides two

new fields, EIS and EOS, in the SCTLR_ELx system control register.

These allow software to disable context synchronisation on excep-

tion entry and return, respectively. While the semantics is clear for

these systems, the programming model is unpredictable and hard to

program correctly, and so this configuration is rarely encountered

in practice.

4 Synchronous external aborts
The memory system may detect errors such as data corruption

independently of the MMU or Debug hardware, e.g., using parity

bits or error correcting code. In those cases, it will signal the error

by a class of exceptions called external aborts. The architecture does
not define at which granularity implementations may report such

aborts synchronously, which we refer to as synchronous external
aborts (SEAs). Instances program-order-after a potential cause for

synchronous external aborts are considered speculative until this

external abort can be ruled out, resulting in stronger behaviour

(§4.1). In an implementation that always reports external aborts

asynchronously, the later instances become non-speculative earlier,

allowing them to exhibit weaker behaviours.

When external aborts are reported asynchronously, the sim-

plest recovery is to wind down the aborting process. To allow

programmers more reliable recovery, implementations can support

the Reliability, Availability, and Serviceability (RAS) extension. This

extension is a substantial component of the architecture, far beyond

the scope of this work. Here, we are merely taking the first steps,

describing a baseline of behaviours in a very constrained setting,

that further work may be able to extend to account for the RAS.

4.1 Behaviour resulting from synchronous
external aborts

There is an asymmetry between reads and writes with respect to

speculation: writes cannot be propagated speculatively, whereas

reads can be satisfied speculatively. We will therefore consider the

store and load cases separately.

If a store may generate an SEA, then program-order-later in-

stances are speculative until the store has (at least) propagated to

memory. In that case, write-write re-ordering (MP+po+addr) is for-

bidden. Reads program-order-after writes are permitted to execute

speculatively anyway, and so the presence of these SEAs does not

restrict their ability to execute early.

More interestingly, if a load may generate an SEA, then program-

order-later instances are speculative until the load has completed all

its reads, and is non-restartable. This means that writes program-

order-after that read are forbidden from executing out-of-order.

This forbids interesting tests which would otherwise be allowed,

namely load-buffering (LB+pos) and MP with a plain ISB after one

load (MP+dmb.sy+isb) [55].

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Precise exceptions in relaxed architectures ,

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

4.2 Load buffering and the out-of-thin-air
problem

This has an important and hitherto not well-understood impact on

programming-language concurrency models. Ruling out LB enables

substantially simpler design of programming language concurrency

models: they can execute instructions in-order and merely keep a

history of the writes seen so far, e.g. [40], and thereby avoid the

notorious out-of-thin-air problem [13]. These simpler semantics

support a line of model checkers for C/C++ and LLVM [36–38]. In

contrast, the presence of LB seems to require significant sophistica-

tion [3, 13, 14, 17, 32, 33, 47, 48].

5 An axiomatic model of exceptions
We now give a formal semantics that describes the concurrent

behaviour of precise exceptions on Arm-A. We give it as an ex-

tension of the previous model of Pulte et al. [50], a predecessor of

the current Arm model [21], in the standard ‘cat’ format [8, 12], in

Figure 9.

The model is parameterised along two axes:

• FEAT_ExS corresponds to the feature of the same name

being implemented; we do not support runtime changes of

the related SCTLR_ELx.{EIS,EOS} fields, and so fix them

as variants.

• SEA_R and SEA_W correspond to the ImplementationDe-

fined choice of whether loads or stores may generate syn-

chronous external aborts.

Most current hardware does not support FEAT_ExS, and more-

over, we expect that most software would not use it. However, its

semantics is relatively straight-forward as we understand it, and so

we include it in our model.

We add new events to the candidate execution: TE (take excep-

tion) and ERET, which correspond to the synchronisation points

(whether they are synchronising) of taking or returning from an

exception; and MRS and MSR events, for reading and writing system

registers, corresponding to the Arm MRS and MSR instructions which

change the context.

Exceptions and program order. We include all the new events in

program-order. This includes the events from instructions directly

before and after taking or returning from an exception.

Interrupts. While this cat model does not support inter-processor

interrupts and the generic interrupt controller (see §7 for a draft

extension to support them), it does support other precise asynchro-

nous exceptions (e.g. timers).

Ordered-before. We expand ordered-before:

• Wherever ctrl|(addr;po) was used before, we also in-

clude instructions program-order-after reads orwriteswhen

in the relevant SEA variant. With those variants, the instruc-

tions program-order-after those events are speculative up

until the memory access has completed.

• The previous model’s use of ISB was purely for its context

synchronisation effect. Accordingly, wherever [ISB] was

used before, we include exception entry (TE) and exit (ERET),

unless we are in the variant where context synchronisation

on those events is disabled.

"Arm-A exceptions"

include "cos.cat"
include "arm-common.cat"

(* might-be speculatively
executed *)

let speculative =
ctrl

| addr; po
| if "SEA_R" then [R]; po

else 0
| if "SEA_W" then [W]; po

else 0

(* context-sync-events *)
let CSE =

ISB
| if "FEAT_ExS" & ∼"EIS"

then 0 else TE
| if "FEAT_ExS" & ∼"EOS"

then 0 else ERET

let ASYNC =
TakeInterrupt

(* observed by *)
let obs = rfe | fr | co

(* dependency-ordered-
before *)

let dob =
addr | data

| speculative ; [W]
| speculative ; [ISB]
| (addr | data); rfi

(* atomic-ordered-before *)
let aob =

rmw
| [range(rmw)]; rfi; [A|Q]

(* barrier-ordered-before

*)
let bob =

[R] ; po ; [dmbld]
| [W] ; po ; [dmbst]
| [dmbst]; po; [W]
| [dmbld]; po; [R|W]
| [L]; po; [A]
| [A | Q]; po; [R | W]
| [R | W]; po; [L]
| [dsb]; po

(* contextually-ordered-
before *)

let ctxob =
speculative; [MSR|CSE]

| [MSR]; po; [CSE]
| [CSE]; po

(* async-ordered-before *)
let asyncob =

speculative; [ASYNC]
| [ASYNC]; po

(* Ordered-before *)
let ob = (obs | dob | aob |
bob | ctxob | asyncob)+

(* Internal visibility
requirement *)

acyclic po-loc | fr | co |
rf as internal

(* External visibility
requirement *)

irreflexive ob as external

(* Atomic: Basic LDXR/STXR
constraint to forbid
intervening writes. *)

empty rmw & (fre; coe) as
atomic

Figure 9: Arm-A exceptional model (greyed out parts are
unchanged from the original model).

• We extend barrier-ordered-beforewith the DSB barriers. The

barrier event classes are upwards-closed, so that DSB.SY is

included in all the dmb events.

• We add a context-ordered-before (ctxob) sub-clause to the

ordered-before relation, which captures the ordering of

context-changing operations and context-synchronisation:

namely, that context-changes and context-synchronisation

cannot happen speculatively; that all context-changes are

ordered before any context-synchronisation; and that no

instruction program-order-after context-synchronisation

can be executed until the synchronisation is complete.

• Weadd an async-ordered-before (asyncob) clause to ordered-

before, capturing that asynchronous events (such as in-

terrupts) cannot be done speculatively, and instructions

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

, Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

program-order-after them may not happen before the asyn-

chronous event which precipitated them.

5.1 Executable-as-a-test-oracle implementation
We implement the model in Isla [12], an SMT-based executable

oracle for axiomatic concurrency models (and ISA semantics). Isla

takes as input a memory model in herdtools-like cat format, and

a litmus tests. To support tests with asynchronous exceptions, we

added a construct to specify a label where the exception will occur,

so that Isla then pends an interrupt at that program point.

The instruction semantics we use is a translation into the Sail

language of the Armv9.4-A ASL specification, including the top-

level function provided by Arm. [15] The translation process [11]

is mostly automatic, requiring select manual interventions mostly

due to differences in the type systems of ASL and Sail. We also

added patches to support the integration with Isla, in particular

adding hooks to expose information about exceptions being taken

in a form that can be readily consumed by Isla. In doing so, we

encountered and fixed some bugs in the ASL model related to uses

of uninitialised fields in data structures, as well as missing checks

for implemented processor features that led to spurious system

register accesses.

For all the (non-IPI) tests presented in this paper, Isla, the ar-

chitectural intent as we understand it, and the results of hardware

testing from §3.2 are consistent.

6 Challenges in defining precision
The phenomena we describe in §3 highlight that the historical,

naive definition of precision does not account for relaxed memory.

The open problem is then how to adequately define precision in a
relaxed-memory setting. This challenge is hinted at in the way the

Arm reference manual [9, D1.3.1.4, p6060] defines precision as:

An exception is precise if on taking the exception, the hard-

ware thread (aka processing element, PE) state and the

memory system state is consistent with the PE having ex-

ecuted all of the instructions up to but not including the

point in the instruction stream where the exception was

taken from, and none afterwards. [except that in certain

specific cases some registers and memory values may be

UNKNOWN]

This definition explicitly allows various side effects of an instruc-

tion executing when an exception is taken to be visible. The details

are intricate, but in outline: registers that would be written by the

instruction but which are not used by it (to compute memory access

addresses) can become UNKNOWN, and for instructions that in-

volve multiple single-copy-atomic memory writes (e.g. misaligned

writes and store-pair instructions), where each write might gen-

erate an exception (e.g. a translation fault), the memory locations

of the writes that do not generate exceptions become UNKNOWN.

These side effects could be observed by the exception handler, and

the memory write side effects could be observed by other threads

doing racy reads. Hardware updates to page-table access flags and

dirty bits, and to performance counters, could also be observable.

This means that the abstraction of a stream of instructions exe-

cuted up to a given point does not account for the relaxed-memory

behaviour.

Arm classify particular kinds of exceptions as precise or not, but

all the above makes it hard to define in general what it means for

an exception to be precise in a relaxed setting.

The ultimate architectural intent of precision is that it is suffi-

cient to meaningfully resume execution after the exception. For

example, for software that does mapping on demand, when an

instruction causes a fault by accessing an address which is not

currently mapped, the exception handler will map that address and

return. This means that re-executing the original instruction will

overwrite these UNKNOWNs, and will have ordering properties

much like the original instruction would have had if the mapping

had already been in place.

Our models are complete enough to reason about such cases

in concrete examples. However, a general definition of precision,

and the accompanying reasoning principle, would have to cap-

ture assumptions about the exception handler and its concurrent

context to ensure that they do not observe the above side effects.

More straightforwardly, the above definition of what becomes UN-

KNOWN would have to be codified, as that is not currently in the

ASL architectural pseudocode.

Exceptions may also be imprecise, in which case the behaviour is

very loosely constrained, and the current architecture does not give

well-defined guarantees in the presence of imprecise exceptions. All

exceptions in Arm are precise except for external memory errors

which are not reported synchronously (§4), which we do not cover.

7 Software-generated interrupts
Inter-processor interrupts (IPIs), known as software-generated in-

terrupts (SGIs) on Arm, are an important synchronisation mech-

anism available to software. They are used throughout systems

software to signal other threads, including within the Linux kernel

(in its RCU synchronisation mechanism), in software (via Linux’s

sys_membarrier), e.g. in JITs [58], and in programming language

runtimes (e.g. in Microsoft’sVerona [18]). Such use of SGIs criti-

cally depends on a detailed understanding of the interaction of

exceptions with relaxed-memory behaviour.

To manage the sending, routing, prioritisation, and delivery of

interrupts, Arm define an optional generic interrupt controller (GIC).
The GIC provides a uniform API for sending and routing interrupts

from peripherals to threads, and comes in several versions. We

focus on GICv3 and its CPU interface, but expect the behaviour we

describe should apply to GICv4.

There are many interesting questions about SGIs. We cover just

a simple baseline: enough to reason about the synchronisation used

by software, but ignoring much of the complexity of the GIC. We fix

a relatively simple configuration, and focus on the relaxed-memory

aspects of the interaction between SGIs and the rest of the memory

and processor state.

7.1 The Generic Interrupt Controller – basic
machinery

We begin by introducing the context of the basic Arm GIC ma-

chinery, before addressing its relaxed ordering in later subsections.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Precise exceptions in relaxed architectures ,

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

An interrupt is generated on its source (a hardware thread or some

peripheral) for a particular event (e.g. an SGI). This interrupt is then

sent to the interrupt controller, which is split into a distributor, the

global machinery in charge of routing interrupts to cores, and the

per-thread redistributors, each of which maintains a thread-local

state for each interrupt (which we describe in more detail later).

Interrupts are identified in the GIC by its ‘interrupt ID number’ (IN-

TID). Each instance of an interrupt sent to the interrupt controller

is associated with an INTID, either by software or a peripheral,

and is provided to the receiving core in a register it can read (via

acknowledgement, described later).

Each hardware thread (PE) has an interrupt status register (the

ISR), which has a single pending status bit for each interrupt class

(IRQ, FIQ, SError, etc). For each fetch-decode-execute cycle of the

top-level loop (see §2.3.1), the processor checks these status bits

to determine whether an interrupt is pending; if an interrupt is

pending and is not masked on that PE, the PE takes that interrupt.

It is the interrupt controller’s responsibility to set and clear the

pending bit in that register, notifying the thread of a pending in-

terrupt. To determine when to deliver (set the bit in the interrupt

status register) interrupts to the core, the redistributor maintains

three key pieces of state (this is for an ‘edge-triggered’ interrupt,

such as for SGIs; we do not discuss ‘level-sensitive’ interrupts):

• A priority to assign to each interrupt source, and the current

‘working’ priority of the interrupt(s) being handled.

• A priority mask, which prevents interrupts with too low a

priority from being delivered to the core.

• A per-INTID state, which is one of:

– Inactive: there is no current interrupt;

– Pending: the GIC has received an interrupt, and maybe

delivered it, but the core has not begun handling it; or

– Active: the core has signalled it is handling the inter-

rupt, but not yet signalled it is done.

Lifecycle of an interrupt. Interrupts start out Inactive. When an

interrupt is asserted by the source, the GIC sets the state for this in-

terrupt’s INTID to Pending. Within some unspecified, finite amount

of time, the GIC will set the pending bit in the interrupt status reg-

ister for the core, enabling the core to take an exception on the next

fetch-decode-execute loop.

The core should then acknowledge the interrupt, by reading the

appropriate interrupt-acknowledge-register (IAR); this returns the

INTID for use by the core, and sends a request to the redistributor to

mark the INTID as Active. Transitioning to the active state sets the

working priority to the priority of that INTID’s source, preventing

lower-priority interrupts from pre-empting the core, and clears the

pending bit in the interrupt-status-register on the core. If another

interrupt with the same INTID is asserted while the interrupt is

active, that instance will be buffered (only a single extra instance

may be buffered) and taken later, and the INTID is said to be ‘Active

and Pending’.While the interrupt is active, it will not be re-delivered

to the core, so even if the interrupt service routine performs an

ERET, it will not re-take the exception.

At some later time, the core may finish handling the interrupt

and be ready to receive further instances of that INTID. There are

two ways to do this, depending on whether one wants to separate

priority drop from deactivation, which is controlled by the EOImode.

Inactive Pending

Active &

pending

Active
source asserts interrupt

(eg by writing ICC_SGI1R_EL1);
GIC delivers interrupt

by setting pending bit in ISR

software changes pending state

software deactivates interrupt

re-pend
INTID

software changes
pending state

target acks interrupt
by reading IAR;

GIC unsets pending bit in ISR

target deactivates interrupt
by writing to EOIR/DIR
(depending on EIOmode)

Figure 10: GIC automaton, for each PE and each INTID, based
on Figure 4-3 “Interrupt handling state machine” from Arm
[10, §4.1.2], specialised to edge-triggered behaviour.

With EOImode=0, by writing the INTID to the end-of-interrupt

register (EOIR), the interrupt is deactivated simultaneously with

the the priority drop. With EOImode=1, writes to the EOIR only

perform priority drop, requiring separate deactivation through a

write to the deactivate-interrupt-register (DIR). Additionally, the

GIC interface provides registers which can manually set the current

priority, or mask, or explicitly set the state of an interrupt. Figure 10

shows the typical transitions between states.

Intended software usage. Typically, software use of interrupts

falls into one of two categories:

• Nested interrupt servicing, where software readily uses

priorities and handles the interrupt directly in the interrupt

service routine, as it typical in real-time OSs.

• Deferred interrupt handling, where software acknowledges

the interrupt directly, but handles it later.

Linux falls into the second category, utilising only a single inter-

rupt priority. This ‘split’ approach to handling interrupts, where the

interrupt service routine merely acknowledges, and the actual han-

dling of the interrupt comes later, leads Linux to adopt EOImode=1.

When the interrupt is taken by the core, it is acknowledged, the

INTID is checked against special cases, priority is quickly dropped,

and interrupts are unmasked. The actual interrupt may then be han-

dled, concurrently with new interrupts being signalled to the core,

although duplicates of the incident INTID will still be masked as it

is not yet deactivated. Eventually, the core completes the work for

that interrupt and then deactivates it, advancing the state machine.

7.2 Ordering of the propagation of SGIs
An SGI is generated by a write to the appropriate register (e.g.

ICC_SGI1R_EL1), and is received on one or several thread(s). This

gives rise to questions of three kinds:

• What is required to order the generation of the SGI after

earlier accesses?

• Does routing of the SGI imply ordering? e.g. is the interrupt

controller an observer wrt. multi-copy-atomicity?

• What is required to ensure that the sequence of acknowl-

edgement and deactivation happens correctly?

There are few guarantees about the order of propagation of SGIs,

or interrupts generally. Interrupts may be delivered to the core at

any time, and multiple pending interrupts may be delivered in any

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

, Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

MOV X0,#1
STR X0,[X1] // write data
DSB ST
MOV X2, #1, LSL #40
//generate SGI
MSR ICC_SGI1R_EL1, X2
ISB

Thread 0
NOP
Thread 1

MRS X3, IAR // ack interrupt
AND X3, X3, #0xFFFFFF
DSB SY
MSR EOIR, X3 // drop priority
ISB
MOV X0, #1
LDR X1,[X2] // read data
DSB SY
MSR DIR, X3 // deactivate
ERET

T1 Handler

Initial state: *x=0;
0:PSTATE.EL=1; 1:EOIMode=1

0:X1=x; 1:X0=0, 1:X1=0, 1:X2=x

MPviaSGIEIOmode1sequence AArch64

Forbidden: 1:X0=1, 1:X1=0

Figure 11: MPviaSGIEIOmode1sequence: Synchronisation-
via-SGI with the full acknowledge-drop-deactivate sequence
appropriate for EOImode=1.

order (priorities allowing). There are no guarantees analogous to

the coherence or atomicity of memory, and generated interrupts

may be re-ordered, or delivered to different cores in different orders.

However, as discussed earlier, interrupts may not be speculated,

and so the interrupt cannot be delivered to the target PE before it

is generated.

SGI litmus testing. We extract the fundamental Message-Pass-via-

SGI shape underlying Linux’s implementation of RCU on Armv8 as

a litmus test, MPviaSGIEIOmode1sequence, in Figure 11. Passing a

message through an SGI requires some synchronisation between

the write of the data and the generation of the SGI (here a DSB ST

on Thread 0), and requires observation of the data in the exception

handler; the SGI also needs to be is properly acknowledged and

deactivated, with the appropriate barriers.

This test is composed of two interacting parts: the part that

imposes the ordering between the write and the read of the data,

and the part that interacts with the GIC to manage the interrupt.

Figure 12 asks the most basic question of this shape: if we try pass

a message via an SGI, without any further synchronisation, can

we still read an old value? The answer is yes, because the genera-

tion and subsequent delivery of the SGI could happen before the

propagation of the store. On the other hand, the extensive synchro-

nisation on the receiving thread imposed by GIC management is

accidental for the read, which is already strongly ordered after the

taking of the exception.

7.3 Software usage of SGIs
Synchronisation mechanisms like those discussed above rely on

this link between memory accesses and interrupts to achieve low-

overhead synchronisation. More specifically, they push the cost

away from normal memory accesses and onto a “system-wide mem-

ory barrier” implemented using interrupts. This is a fork-join bar-

rier, not a fence. Interestingly, RCU and the Verona asymmetric

lock rely on two different aspects of this system-wide memory

barrier: RCU relies on masking of interrupts to implement cheap

read critical sections, whereas the Verona asymmetric lock relies

on precision of interrupts (§6).

System-wide memory barrier. This system-wide memory barrier

is a two-way barrier: the issuing PE notifies all other PEs, and waits

MOV X0, #1
STR X0, [X1]
MOV X2, #1, LSL #40
MSR ICC_SGI1R_EL1, X2

Thread 0
NOP
Thread 1

MOV X0, #1
LDR X1, [X2]
ERET

T1 Handler

Initial state: *x=0;
0:PSTATE.EL = 1

0:X1=x; 1:X0=0, 1:X1=0, 1:X2=x

MPviaSGI AArch64

Allowed: 1:X0=1, 1:X1=0

W x=1a:

GenerateInterruptb:

Thread 0
TakeInterruptc:

R x=0d:

Thread 1

po pointerrupt

fr

Figure 12: MPviaSGI: message passing via SGI, illustrating
two potential phenomena: (1) On the writer side: a po-earlier
write gets reorderedwith a po-later GenerateInterrupt. (2) On
the reader side: a po-earlier TakeInterrupt gets reordered
with a po-later read (from the interrupt handler).

for a reply from all of them. The notification is implemented using

interrupts, relying on the ordering described above, which is guar-

anteed by Arm-A. In Kernel RCU (where this barrier forms the core

of synchronize_rcu, exposed to userland as the sys_membarrier

syscall), the wait for a reply is implemented using memory opera-

tions, namely a lock-protected counter that threads increment to

acknowledge receipt of the interrupt. We simplify this (to a write

to a flag) in our litmus tests to reduce complexity.

RCU. The key concept of RCU is that of a grace period [44][43,

§9], as captured by Alglave et al. [5] in the RCU-MP litmus test

(Figure 13).

We focus on the use of interrupts in Kernel RCU. For perfor-

mance, RCU also relies on address dependencies to implement

cheap ordering in read sections, but that is already explained in the

‘user’ model of Arm-A [24, 50] by MP+dmbst+addr.

At the level of Arm assembly, the synchronize_rcu system-

wide memory barrier is decomposed into a DSB ST followed by

an MSR to SGI1R, and a wait for the acknowledgement (in our cut-

down tests, a read acquire of the ack flag); entering the read critical

section via rcu_read_lock and leaving it via rcu_read_unlock

decompose to writes to the DAIF (pseudo)register that mask and

unmask interrupts.

The crux of this litmus test is that interrupts are masked between

the two reads, and that the handler is therefore either before both

reads, or after both reads, but not in between (as in, no event of

the handler is in between the two reads in program order). At the

Linux C level, this masking ensures that the interrupt generated by

the synchronize_rcu system-wide memory barrier is taken either

before or after the read section, but not during, providing the basis

for mutual exclusion. In the litmus tests, this is captured by the fact

that if the read of the flag y sees the flag, the read of the data x sees

the new data.

Verona asymmetric lock. We capture the key scenario of the asym-

metric lock of Verona [46] (and of ‘biased locking’ and ‘asymmetric

Dekker synchronisation’ [16, 20, 22, 23, 34, 35, 42, 51] as used in the

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Precise exceptions in relaxed architectures ,

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

//*x = 1;
MOV X0, #1
STR X0, [X1]
//sync_rcu();
MOV X2, #1, LSL #40
MSR ICC_SGI1R_EL1, X2
LDAR X5, [X6]
//*y = 1;
MOV X3, #1
STR X3, [X4]

Thread 0
//read_lock();
MSR DAIFSet,
#0xf
//... = *y;
LDR X0, [X1]
//... = *x;
LDR X2, [X3]
//read_unlock();
MSR DAIFClr, #0xf

Thread 1
ACK-DEACT(X6)
MOV X2, #1
STLR X2,[X5]
ERET

T1 Handler

Initial state: *x=0, *y=0, *z=0;
0:X1=x, 0:X4=y, 0:X6=z;
1:X0=0, 1:X1=y, 1:X2=0, 1:X3=x, 0:X5=z

RCU-MP AArch64

Allowed: 0:X5=1, 1:X0=1, 1:X2=0

W x=1a:

GenerateInterruptb:

Racq z=1c:

W y=1d:

Thread 0
MSR DAIFSete:

R y=1f:

R x=0g:

MSR DAIFClrh:

Thread 1
TakeInterrupti:

ACK-DEACTj:

Wrel z=1k:

ERETl:

T1 Handler

po

po

po

po

po

po

po

po

po

interrupt

rf

fr

rf

Figure 13: RCU-MP: the key test of RCU: are two writes sepa-
rated by the generation of an SGI ordered with respect to a
read critical section implemented via interrupts masking?
With a DSB ST between a and b, this is forbidden.

JVM). It occurs when an ‘internal acquire’ from the (unique) owner

thread contends with an ‘external acquire’ from another thread.

The internal acquire is meant to be cheap, and only involves writ-

ing to an ‘external’ flag to express interest, and then, in program

order, reading from an ‘internal’ flag to ensure that other threads

have not expressed interest (falling onto the slow path if they have).

Crucially, in C++, there is a Barrier::compiler() that prevents

reordering of two instructions by the compiler, but does not appear

in the generated assembly. The external acquire does the symmetric

thing, writing on the ‘internal’ flag to express interest, and then

reading from the ‘external’ flag to ensure that the owner has not ex-

pressed interest. To order this, it uses a Barrier::memory(), which

involves a FlushProcessWriteBuffers(), which on Linux is im-

plemented using a sys_membarrier, which essentially boils down

to a synchronize_rcu.

The key guarantee that is relied in the ‘cheap’ thread is that the

interrupt must be taken precisely, and that it is therefore taken,

in program order, either entirely before the read of the internal

flag, entirely between the read of the internal flag and the write

to the external flag, or entirely after the write to the external flag.

In all three cases, the system-wide memory barrier ensures that

at least one of the two threads must see that the other thread has

expressed interest (must read the recent write), and therefore backs

off, ensuring mutual exclusion.

7.4 Ordering of GIC register writes
The Arm GIC Architecture Specification text (IHI 0069H.b) is rea-

sonably clear about the relaxed ordering of GIC events induced by

accesses to GIC registers with program-order later events (12.1.6

“Observability of the effects of accesses to theGIC registers”), though

there are still subtle requirements for barriers. A DSB.SY enforces

ordering of GIC events (generate, acknowledge, drop priority, and

deactivate) induced by accesses to GIC registers (SGI1R, IAR, EOIR,

DIR) with program-order-later events, as they are such effects. DSBs

are not needed to merely order the register accesses themselves.

An ISB ensures that any pending interrupts are taken before

executing the program-order later instructions.

If there was an interrupt in the Active and Pending state at deac-

tivation, then it is immediately re-pended on the PE (and so delivery

can immediately happen again). But, if there is no DSB between

the write of the deactivation and the context synchronisation, it

might be that the assertion and delivery did not yet occur, causing

the interrupt to be taken later.

7.5 A draft axiomatic extension
Wegive a draft extension to the previous axiomaticmodel to support

inter-processor interrupts, noting the challenges.

GIC candidates. Unlike with most of the instruction semantics,

there is very little public ASL from Arm which describes the pri-

ority and INTID state machine system. While much of the GIC’s

machinery, routing, virtualisation and so on, is not required to dis-

cuss the usage of interrupts here, a large quantity of the base GIC

architecture would need to be turned into ASL and incorporated

into the machinery. The rest of this extension assumes one has such

machinery in place.

First, we must extend the thread semantics: reads and writes of

the registers of the CPU interface to the GIC, and interrupt status

register, must be treated differently than other registers, lifting

them to the memory model with a relation constraining the values

they could read, analogous to ‘reads-from’. This allows us to tie the

thread’s events interacting with the GIC, with those events coming

from the GIC ASL.

We add the following new events, grouped as GICEvents:

• GenerateInterrupt, for the GIC action from writing the

SGI1R register, which sends an IPI to other cores. It is asso-

ciated with a target set of CPUs.
• Acknowledge, for the relevant effect in the GIC, i.e. the state

machine change and related updates to registers. Here, we

assume the GIC update is atomic, which ought to be true

for simple physical SGIs.

• DropPriority and Deactivate, for the relevant effects on

the GIC state machine and priority masking.

These new events are placed iio-after (intra-instruction-ordered)
the respective register events. Such events could instead be inserted

into po, with suitable modification of the previous relations, al-

though for simplicity here we do not.

Interrupt witness. We add a new existentially-quantified rela-

tion to the witness: interrupt. This associates the TakeInterrupt

with the GenerateInterrupt which caused it, constraining any

program-order-later Acknowledge and corresponding MRS event

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

, Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

INTID values. This effectively assigns the INTID at the point the

interrupt is taken, and makes interrupt behave like rf for INTIDs;

if the INTID is never read, one must consider all possible interrupt

sources.

Update to relations and axioms. The update to the relations is

then fairly straightforward: insert interrupt into ob, and make

DSB instructions order GIC events in program-order. We do not put

GICEvents in program order to express that they may execute out-

of-order with respect to other events in the same thread, including

context-synchronisation, unless explicitly ordered (e.g. by DSBs).

8 Conclusion
We identify an open problem in giving a definition of precision

on relaxed architectures, and describe the challenge in doing so.

We characterise some basic guarantees of precision, which should

make it possible to apply some of the abstraction techniques used

to reason about nesting of interrupts [39, 41].

We extend the Arm-A memory model to cover exceptions, an

important aspect of defining the architectural interface, clarifying

the behaviour at that interface, and giving an executable-as-a-test-

oracle implementation of an axiomatic model usable as an explo-

ration tool to investigate the effect of synchronisation on hardware

exceptions and interrupts. We describe the interaction of hardware

exceptions with memory errors, and the consequences on the user

model.

We begin building a model for software-generated interrupts and

the required parts of the interrupt machinery relied upon by the

common computing base, giving the key shapes and litmus tests,

some baseline behaviours of the Arm GIC, and a draft extension

that covers key use cases.

Although there is much work still to do on exceptions, interrupts,

and their interaction with other features, this work creates a robust

foundation that future work can build on.

Acknowledgements
We thank Richard Grisenthwaite (Arm EVP, Chief Architect, and

Fellow), Martin Weidmann (Director of Product Management, Arm

Architecture and Technology Group), and Will Deacon (Google)

for detailed discussions about the Arm architecture. We thank Ben

Laurie and Sarah de Haas (Google) for their support.

This workwas funded in part byGoogle. This workwas funded in

part by Arm. This work was funded in part by an AUFF starter grant

(Pichon-Pharabod). This work was funded in part by two Amazon

Research Awards (Pichon-Pharabod; Sewell and Simner). This work

was funded in part by UK Research and Innovation (UKRI) under

the UK government’s Horizon Europe funding guarantee for ERC-

AdG-2022, EP/Y035976/1 SAFER. This project has received funding

from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant

agreement No 789108, ERC-AdG-2017 ELVER). This work is sup-

ported by ERC-2024-POC grant ELVER-CHECK, 101189371. Funded

by the European Union. Views and opinions expressed are however

those of the author(s) only and do not necessarily reflect those of

the European Union or the European Research Council Executive

Agency. Neither the European Union nor the granting authority

can be held responsible for them. This work was supported in part

by the Innovate UK project Digital Security by Design (DSbD) Tech-

nology Platform Prototype, 105694. The authors would like to thank

the Isaac Newton Institute for Mathematical Sciences, Cambridge,

for support and hospitality during the programme Big Specifica-

tion, where work on this paper was undertaken. This work was

supported by EPSRC grant EP/Z000580/1. This work was funded in

part by a Royal Society University Research Fellowship. One of the

authors has received funding from the UK Advanced Research and

Innovation Agency (ARIA) as part of the project Qbs4Safety: Core

Representation Underlying Safeguarded AI.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Precise exceptions in relaxed architectures ,

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

References
[1] A. Adir, H. Attiya, and G. Shurek. 2003. Information-Flow Models for Shared

Memory with an Application to the PowerPC Architecture. IEEE Trans. Parallel
Distrib. Syst. 14, 5 (2003), 502–515. https://doi.org/10.1109/TPDS.2003.1199067

[2] Jade Alglave. 2010. A Shared Memory Poetics. Ph. D. Dissertation. Université
Paris 7 – Denis Diderot.

[3] Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc

Maranget. 2021. Armed Cats: Formal Concurrency Modelling at Arm. ACM
Trans. Program. Lang. Syst. 43, 2 (2021), 8:1–8:54. https://doi.org/10.1145/3458926

[4] Jade Alglave, Richard Grisenthwaite, Artem Khyzha, Luc Maranget, and Nikos

Nikoleris. 2024. Puss In Boots: on formalising Arm’s Virtual Memory System Ar-

chitecture (extended version). (May 2024). https://inria.hal.science/hal-04567296

working paper or preprint.

[5] Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S. Stern.

2018. Frightening Small Children and Disconcerting Grown-ups: Concurrency

in the Linux Kernel. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018, Xipeng Shen, James

Tuck, Ricardo Bianchini, and Vivek Sarkar (Eds.). ACM, 405–418. https://doi.

org/10.1145/3173162.3177156

[6] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences

in Weak Memory Models. In Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings (Lecture Notes
in Computer Science, Vol. 6174), Tayssir Touili, Byron Cook, and Paul B. Jackson

(Eds.). Springer, 258–272. https://doi.org/10.1007/978-3-642-14295-6_25

[7] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. 2011. Litmus: Running Tests

Against Hardware. In Proc. TACAS. https://doi.org/10.1007/978-3-642-19835-9_5
[8] Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Mod-

elling, Simulation, Testing, and Data Mining for Weak Memory. ACM Trans.
Program. Lang. Syst. 36, 2 (2014), 7:1–7:74. https://doi.org/10.1145/2627752

[9] Arm. 2024. Arm Architecture Reference Manual: for A-profile architecture.

https://developer.arm.com/documentation/ddi0487/latest. Accessed 2024-05-11.

Issue K.a. 14777 pages..

[10] Arm. 2024. Arm Generic Interrupt Controller Architecture Specification, GIC archi-
tecture version 3 and version 4. Technical Report. Arm. IHI 0069H.b (ID041224).

[11] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid, Kathryn E.

Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell, Jon French, Christo-

pher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami, and Peter Sewell. 2019.

ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS. In Proceedings of
the 46th ACM SIGPLAN Symposium on Principles of Programming Languages.
https://doi.org/10.1145/3290384 Proc. ACM Program. Lang. 3, POPL, Article 71.

[12] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter

Sewell. 2021. Isla: Integrating full-scale ISA semantics and axiomatic concurrency

models. In Proc. 33rd International Conference on Computer-Aided Verification
(Lecture Notes in Computer Science, Vol. 12759). Springer, 303–316. https://doi.

org/10.1007/978-3-030-81685-8_14

[13] Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and

Peter Sewell. 2015. The Problem of Programming Language Concurrency Se-

mantics. In Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings
(Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer, 283–307.

https://doi.org/10.1007/978-3-662-46669-8_12

[14] Mark John Batty. 2015. The C11 and C++11 concurrency model. Ph. D. Dissertation.
University of Cambridge, UK. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.

ethos.708458

[15] Thomas Bauereiss, Brian Campbell, Alasdair Armstrong, Alastair Reid, Kathryn E.

Gray, Anthony Fox, Peter Sewell, and Arm Limited. 2024. Sail Armv9.4-A

instruction-set architecture (ISA) model. https://github.com/rems-project/sail-

arm. Accessed 2024-05-11..

[16] Mike Burrows. 2004. How to Implement Unnecessary Mutexes. Springer New
York, New York, NY, 51–57. https://doi.org/10.1007/0-387-21821-1_7

[17] Soham Chakraborty. 2019. Correct Compilation of Relaxed Memory Concurrency.
Ph. D. Dissertation. Kaiserslautern University of Technology, Germany. https:

//kluedo.ub.rptu.de/frontdoor/index/index/docId/5697

[18] Luke Cheeseman, Matthew J. Parkinson, Sylvan Clebsch, Marios Kogias, Sophia

Drossopoulou, David Chisnall, Tobias Wrigstad, and Paul Liétar. 2023. When

Concurrency Matters: Behaviour-Oriented Concurrency. Proc. ACM Program.
Lang. 7, OOPSLA2 (October 2023). https://www.microsoft.com/en-us/research/

publication/when-concurrency-matters-behaviour-oriented-concurrency/

[19] William W. Collier. 1992. Reasoning about parallel architectures. Prentice Hall.
[20] Mingyao Yang Dave Dice, Hui Huang. 2001. Asymmetric Dekker Synchroniza-

tion. http://web.archive.org/web/20070214114205/http://blogs.sun.com/dave/

resource/Asymmetric-Dekker-Synchronization.txt

[21] Will Deacon, Jade Alglave, Nikos Nikoleris, and Artem Khyzha. 2023. The

ARMv8 Application Level Memory Model. https://github.com/herd/herdtools7/

blob/master/herd/libdir/aarch64.cat (accessed 2019-07-01). Accessed 2024-11-19.

[22] Dave Dice. 2006. Biased Locking in Hotspot. Oracle Blog, Wayback Ma-

chine. http://web.archive.org/web/20150320095550/https://blogs.oracle.com/

dave/entry/biased_locking_in_hotspot

[23] David Dice, Mark S. Moir, and William N. Scherer III. 2010. United States Patent

US 7814488B1 Quickly Reacquirable Locks. United Statess Patent Office.

[24] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali Sezgin,

Luc Maranget, Will Deacon, and Peter Sewell. 2016. Modelling the ARMv8

architecture, operationally: concurrency and ISA. In Proceedings of the 43rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St.
Petersburg, FL, USA). 608–621. https://doi.org/10.1145/2837614.2837615

[25] Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget,

Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. 2017. Mixed-size

concurrency: ARM, POWER, C/C++11, and SC. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.).

ACM, 429–442. https://doi.org/10.1145/3009837.3009839

[26] Kourosh Gharachorloo. 1995. Memory Consistency Models for Shared-Memory
Multiprocessors. Ph. D. Dissertation. Stanford University.

[27] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B. Gibbons, Anoop

Gupta, and John L. Hennessy. 1990. Memory Consistency and Event Ordering

in Scalable Shared-Memory Multiprocessors. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, Seattle, WA, USA, June 1990,
Jean-Loup Baer, Larry Snyder, and James R. Goodman (Eds.). ACM, 15–26. https:

//doi.org/10.1145/325164.325102

[28] Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit

Sarkar, and Peter Sewell. 2015. An integrated concurrency and core-ISA architec-

tural envelope definition, and test oracle, for IBM POWER multiprocessors. In

Proceedings of the 48th International Symposium on Microarchitecture (Waikiki).
635–646. https://doi.org/10.1145/2830772.2830775

[29] John L. Hennessy and David A. Patterson. 2012. Computer Architecture: A Quan-
titative Approach (5 ed.). Morgan Kaufmann, Amsterdam.

[30] Luc Maranget. 2024. Personal communication.

[31] Intel. 2002. A Formal Specification of Intel Itanium Processor Family Memory

Ordering. developer.intel.com/design/itanium/downloads/251429.htm.

[32] Radha Jagadeesan, Alan Jeffrey, and James Riely. 2020. Pomsets with precondi-

tions: a simple model of relaxed memory. Proc. ACM Program. Lang. 4, OOPSLA
(2020), 194:1–194:30. https://doi.org/10.1145/3428262

[33] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer.

2017. A promising semantics for relaxed-memory concurrency. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages
(Paris, France) (POPL ’17). Association for Computing Machinery, New York, NY,

USA, 175–189. https://doi.org/10.1145/3009837.3009850

[34] Kiyokuni Kawachiya. 2005. Java Locks: Analysis and Acceleration. Ph. D. Disser-
tation. Keio University.

[35] Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera. 2002. Lock reser-

vation: Java locks can mostly do without atomic operations. In Proceedings
of the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (Seattle, Washington, USA) (OOPSLA ’02).
Association for Computing Machinery, New York, NY, USA, 130–141. https:

//doi.org/10.1145/582419.582433

[36] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis.

2017. Effective stateless model checking for C/C++ concurrency. Proc. ACM
Program. Lang. 2, POPL, Article 17 (dec 2017), 32 pages. https://doi.org/10.1145/

3158105

[37] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model

checking for weakly consistent libraries. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ,

USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA,

96–110. https://doi.org/10.1145/3314221.3314609

[38] Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker

for Weak Memory Models. In Computer Aided Verification, Alexandra Silva and
K. Rustan M. Leino (Eds.). Springer International Publishing, Cham, 427–440.

https://doi.org/10.1007/978-3-030-81685-8_20

[39] Daniel Kroening, Lihao Liang, Tom Melham, Peter Schrammel, and Michael

Tautschnig. 2015. Effective Verification of Low-Level Software with Nested Inter-

rupts. In Proceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2015, Grenoble, France, March 9-13, 2015, Wolfgang Nebel and

David Atienza (Eds.). EDA Consortium, 229–234. http://www.cs.ox.ac.uk/tom.

melham/pub/Kroening-2015-EVL.pdf

[40] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer.

2017. Repairing sequential consistency in C/C++11. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York,

NY, USA, 618–632. https://doi.org/10.1145/3062341.3062352

[41] Lihao Liang, Tom Melham, Daniel Kroening, Peter Schrammel, and Michael

Tautschnig. 2017. Effective Verification for Low-Level Software with Competing

Interrupts. ACM Transactions on Embedded Computing Systems 17, 2 (December

2017), 36:1–36:26. https://doi.org/10.1145/3147432

13

https://doi.org/10.1109/TPDS.2003.1199067
https://doi.org/10.1145/3458926
https://inria.hal.science/hal-04567296
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1145/2627752
https://developer.arm.com/documentation/ddi0487/latest
https://doi.org/10.1145/3290384
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1007/978-3-662-46669-8_12
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708458
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708458
https://github.com/rems-project/sail-arm
https://github.com/rems-project/sail-arm
https://doi.org/10.1007/0-387-21821-1_7
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/5697
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/5697
https://www.microsoft.com/en-us/research/publication/when-concurrency-matters-behaviour-oriented-concurrency/
https://www.microsoft.com/en-us/research/publication/when-concurrency-matters-behaviour-oriented-concurrency/
http://web.archive.org/web/20070214114205/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
http://web.archive.org/web/20070214114205/http://blogs.sun.com/dave/resource/Asymmetric-Dekker-Synchronization.txt
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
http://web.archive.org/web/20150320095550/https://blogs.oracle.com/dave/entry/biased_locking_in_hotspot
http://web.archive.org/web/20150320095550/https://blogs.oracle.com/dave/entry/biased_locking_in_hotspot
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/325164.325102
https://doi.org/10.1145/325164.325102
https://doi.org/10.1145/2830772.2830775
developer.intel.com/design/itanium/downloads/251429.htm
https://doi.org/10.1145/3428262
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1145/582419.582433
https://doi.org/10.1145/582419.582433
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-81685-8_20
http://www.cs.ox.ac.uk/tom.melham/pub/Kroening-2015-EVL.pdf
http://www.cs.ox.ac.uk/tom.melham/pub/Kroening-2015-EVL.pdf
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3147432

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

, Ben Simner, Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Ohad Kammar, Jean Pichon-Pharabod, and Peter Sewell

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

[42] Patricio Chilano Mateo. 2021. JEP 374: Deprecate and Disable Biased Locking.

JDK Enhancement Proposal. https://openjdk.org/jeps/374

[43] Paul E. McKenney. 2023. Is Parallel Programming Hard, And, If So, What Can You
Do About It? https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/

perfbook/perfbook.html

[44] Paul E. McKenney. 2024. RCU Concepts. https://www.kernel.org/doc/

Documentation/RCU/rcu.txt Accessed 2024-11-19.

[45] Paul E McKenney and John D Slingwine. 1998. Read-copy update: Using execu-

tion history to solve concurrency problems. In Parallel and Distributed Computing
and Systems, Vol. 509518. 509–518.

[46] Matthew J. Parkinson. 2024. Some things I wish I hadn’t seen. presented at The

Future of Weak Memory 2024.

[47] Jean Pichon-Pharabod and Peter Sewell. 2016. A concurrency semantics for

relaxed atomics that permits optimisation and avoids thin-air executions. In

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 622–633. https:

//doi.org/10.1145/2837614.2837616

[48] William W. Pugh. 1999. Fixing the Java Memory Model. In Proceedings of the
ACM 1999 Conference on Java Grande, JAVA ’99, San Francisco, CA, USA, June
12-14, 1999, Geoffrey C. Fox, Klaus E. Schauser, and Marc Snir (Eds.). ACM, 89–98.

https://doi.org/10.1145/304065.304106

[49] Christopher Pulte. 2018. The Semantics of Multicopy Atomic ARMv8 and RISC-V.
Ph. D. Dissertation. University of Cambridge. https://www.repository.cam.ac.

uk/handle/1810/292229.

[50] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and

Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic axiomatic

and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL (2018),

19:1–19:29. https://doi.org/10.1145/3158107

[51] Kenneth Russell and David Detlefs. 2006. Eliminating synchronization-related

atomic operations with biased locking and bulk rebiasing. In Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (Portland, Oregon, USA) (OOPSLA ’06).
Association for Computing Machinery, New York, NY, USA, 263–272. https:

//doi.org/10.1145/1167473.1167496

[52] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc

Maranget, Jade Alglave, and Derek Williams. 2012. Synchronising C/C++ and

POWER. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan Vitek, Haibo Lin,

and Frank Tip (Eds.). ACM, 311–322. https://doi.org/10.1145/2254064.2254102

[53] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams.

2011. Understanding POWER multiprocessors. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2011, San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.).

ACM, 175–186. https://doi.org/10.1145/1993498.1993520

[54] Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,

Thomas Braibant, Magnus O. Myreen, and Jade Alglave. 2009. The seman-

tics of x86-CC multiprocessor machine code. In Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C.

Pierce (Eds.). ACM, 379–391. https://doi.org/10.1145/1480881.1480929

[55] Peter Sewell, Christopher Pulte, Shaked Flur, Mark Batty, LucMaranget, and Alas-

dair Armstrong. 2022. Multicore Semantics: Making Sense of Relaxed Memory

(MPhil slides). https://www.cl.cam.ac.uk/~pes20/slides-acs-2022.pdf

[56] P. Sewell, S. Sarkar, S. Owens, F. Zappa Nardelli, andM. O.Myreen. 2010. x86-TSO:

A Rigorous and Usable Programmer’s Model for x86 Multiprocessors. Commun.
ACM 53, 7 (July 2010), 89–97. https://doi.org/10.1145/1785414.1785443

[57] Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte,

Richard Grisenthwaite, and Peter Sewell. 2022. Relaxed virtual memory in Armv8-

A. In Proceedings of the 31st European Symposium on Programming (Lecture Notes
in Computer Science, Vol. 13240). Springer, 143–173. https://doi.org/10.1007/978-

3-030-99336-8_6

[58] Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-

Pharabod, Luc Maranget, and Peter Sewell. 2020. ARMv8-A System Semantics:

Instruction Fetch in Relaxed Architectures. In Programming Languages and
Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science,
Vol. 12075), Peter Müller (Ed.). Springer, 626–655. https://doi.org/10.1007/978-3-

030-44914-8_23

[59] P. S. Sindhu, J.-M. Frailong, and M. Cekleov. 1991. Formal Specification of

Memory Models. In Scalable Shared Memory Multiprocessors. Kluwer, 25–42.
https://doi.org/10.1007/978-1-4615-3604-8_2

14

https://openjdk.org/jeps/374
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://www.kernel.org/doc/Documentation/RCU/rcu.txt
https://www.kernel.org/doc/Documentation/RCU/rcu.txt
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1145/304065.304106
https://www.repository.cam.ac.uk/handle/1810/292229
https://www.repository.cam.ac.uk/handle/1810/292229
https://doi.org/10.1145/3158107
https://doi.org/10.1145/1167473.1167496
https://doi.org/10.1145/1167473.1167496
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1480881.1480929
https://www.cl.cam.ac.uk/~pes20/slides-acs-2022.pdf
https://doi.org/10.1145/1785414.1785443
https://doi.org/10.1007/978-3-030-99336-8_6
https://doi.org/10.1007/978-3-030-99336-8_6
https://doi.org/10.1007/978-3-030-44914-8_23
https://doi.org/10.1007/978-3-030-44914-8_23
https://doi.org/10.1007/978-1-4615-3604-8_2

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Scope and limitations

	2 Arm-A architectural concepts for exceptions
	2.1 Exception taxonomy
	2.2 Basic architectural machinery for exceptions
	2.3 Instructions and instruction streams

	3 Relaxed behaviour of precise exceptions
	3.1 Context-synchronisation
	3.2 Relaxed behaviours
	3.3 Exception-specific mechanisms
	3.4 Exceptions and the intra-instruction semantics
	3.5 Disabling context synchronisation

	4 Synchronous external aborts
	4.1 Behaviour resulting from synchronous external aborts
	4.2 Load buffering and the out-of-thin-air problem

	5 An axiomatic model of exceptions
	5.1 Executable-as-a-test-oracle implementation

	6 Challenges in defining precision
	7 Software-generated interrupts
	7.1 The Generic Interrupt Controller – basic machinery
	7.2 Ordering of the propagation of SGIs
	7.3 Software usage of SGIs
	7.4 Ordering of GIC register writes
	7.5 A draft axiomatic extension

	8 Conclusion
	References

