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Introduction

The goal of this document is to outline the problems I address in my research,
record my progress in solving them until the present day, and outline the means
I plan to approach them. In the past year, I have looked into three problems:

• Static effect analysis and its denotational semantics (chapter 1).

• A new logic for access control (chapter 2).

• Presheaf denotational semantics for dependency analysis (chapter 3).

In the following three chapters I outline these problems, present our current
results, and outline future research directions. A rough break-up of the tasks I
mention appear in figure 1.

Note that the table contains only the first two problems, as I have chosen
not to pursue the third further.
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Figure 1: research schedule
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Chapter 1

Algebraic Effect Type
Systems

1.1 Introduction

Type and effect systems [TJ92a, Luc87] assign to each term in a programming
language both a type and an effect set. The type describes the various values the
term may evaluate to. The effect set describes the various computational effects
(assignments, raising exceptions, IO, etc.) it may cause during its computation.
For example, the term

M B if true then set(x, 1) else set(x, get(y))

will have the unit type unit of a command, and the effect set {update, lookup}.
These data are usually presented in the form of a type and effect judgement:

x : Loc, y : Loc `M : unit ! {update, lookup}

Lacking a generic framework of computational effects, Talpin and Jouvelot de-
signed their type and effect system with only global state as effects.

Wadler [Wad98, WT03] proposed a translation from the type and effect
judgement Γ `M : A!ε to a computational judgement of the form Γ′ `M ′ : TεA.
Again, Wadler did not provide a generic framework for generic effects, but used
global state and remarked that “It seems clear that other effect systems can be
[.. dealt with ..] in a similar way.”

The translation was given both operational and denotational semantics.
However, the only denotational semantics given were in terms of one monad, in-
cluding all possible effects. Thus, the additional information given by the effect
set is not fully used semantically.

Wadler conjectured the existence of a semantic model in which each syntactic
monad Tε denotes an actual monad, and the subset relation between effect
sets factors through the monads: if ε ⊆ ε′ then there is a suitable monad
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1.1 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

morphism Tε → Tε′ . He called such semantics coherent. To the best of our
knowledge, some coherent semantics were given for a particular combination
of effects [Tol98, Kie98], but no coherent semantics were given to an arbitrary
combination of effects.

Plotkin, Power et. al. introduced the notion of algebraic computational ef-
fects [PP01b, PP03], and their semantics using Lawvere theories and equational
theories [PP04]. These encompass state, non-determinism, exceptions, and IO
[PP02]. Each Lawvere theory gives rise to a corresponding free monad, and
given a cardinal κ, every κ-ranked monad is the free monad of some κ-Lawvere
theory. However, there are monads that are not generated by any Lawvere
theory, such as the continuation monad. Lawvere theories encode the way the
different effects relate to each other, and allow various notions of compositions
of effects [HPP06]. Thus, the algebraic theory of effects offer a modular view of
computational effects.

We propose to use the algebraic theory of effects to give coherent denota-
tional semantics to effect analysis. We plan to use some notion of a Lawvere
subtheory to capture a subset of the algebraic effects included in a Lawvere the-
ory. Lawvere theories seem to support a natural notion of subtheory: given a set
ε of effects, we consider the smallest set of arrows containing the arrows corre-
sponding to effects in ε, and closed in an appropriate way. We can also formulate
the approach in equational terms: Let E be the equational theory corresponding
to the full language, supporting all possible effects. Loosely speaking, E con-
tains all true equations. Let F ⊆ E be the set of all equations involving effects
in ε. As F is an equational theory giving meaning to all effects in ε, it can be
used to give semantics to terms whose effects are in ε. We want to investigate
whether this method allows us to give coherent semantics to effect analysis.

As an initial step in this direction, we investigated the syntactic side of effect
analysis. We provide three novel contributions.

• First, we have generalised the type and effect analysis to deal with ar-
bitrary algebraic effects. The only comparable body of work is Marino’s
and Millstein’s [MM09] generic effect type system, which has no ready
connection to semantics.

• The second contribution is an effect type system to CBPV [Lev04], which
appears to be completely novel.

From the resulting effect type system, we can derive a CBV type-system,
by following Levy’s translation of CBV into CBPV. This CBV system,
when instantiated to region analysis, coincides with the traditional CBV
described by Wadler.

• Finally, we have also followed Levy’s other translation and derived a CBN
effect type system, which may be useful for CBN effectful languages such
as Scala [OCD+06].

This chapter is organised as follows. Sections 1.2–1.4 provide background
about type-and-effect systems, call-by-push-value and the algebraic theory of
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1.2 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

effects. Section 1.5 describes the generic type-and-effect system. Section 1.6
derives type-and-effect systems for both CBV and CBN. Finally, section 1.7
presents our conclusions and outlines further work.

1.2 Region Tracking Effect System

Wadler [WT03] demonstrated his translation between traditional effect systems
and the monadic effect systems using region analysis. His system included
a polymorphic let construct and a fixed-point operator, both of which, for
simplicity, we omit. Wadler also included memory allocation and references to
arbitrary types. As such constructs still do not have satisfactory denotational
semantics, we excluded them from this example system, and use only references
to integers. The simplified system appears in figure 1.1.

A typical judgement in this type-and-effect system is

Γ `eff M : A ! ε

Intuitively, it means that when evaluating the term M , only computational
effects from ε will occur.

The expressions getρ and setρ access a store cell in a memory region ρ.
The setting for region annotated programs is an intermediate language between
region-free source code and low level machine code. The finite set of memory
regions Regions, as well as the choice of region to use for each memory access
is determined by a region inference algorithm [TB98, TBE+01].

Wadler defined three syntactic classes for his effect calculus: values, non-
values and expressions. However, he made no explicit use of non-values, hence
we follow Levy [Lev04], and only specify a syntactic subclass V of overall terms
M .

The effect type system uses finite sets of effects ε, with updateρ and lookupρ

being the possible effects, for all regions ρ.
The primitive types are the unit type unit, integers Int and locations in re-

gion ρ, Locρ. For each finite effect set ε, the function type A1
ε→ A2 corresponds

to a function that, when applied, can only cause the effects in ε.
The values are either bound identifiers or lambda abstractions. Non-value

terms include: post-fix function application M1‘M2, where the function M2

is applied to the argument M1; a monomorphic binding construction for terms
with effects, x toM1. M2, which Wadler called ilet; and two store manipulation
primitives, getρ and setρ.

The two state primitives differ from Wadler’s primitives in several technical
ways. The getρ operator has the same pragmatics of Wadler’s get. However,
the setρ(M1,M2) term has the type unit, whereas the same term in Wadler’s
calculus would have the same type as M2, and would evaluate to the same value
as M2. Also, Wadler’s operations did not include the region explicitly. However,
the region ρ is inferred explicitly while typing the location value M1 : Locρ ! ε,
hence this difference is superficial. Finally, Wadler’s system allows references
to arbitrary types whereas our system only deals with references to integers.
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1.2 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

x ∈ Id ρ ∈ Regions ε ⊆fin

{
lookupρ, updateρ

∣∣ρ ∈ Regions
}

V ::= x | λx.M
M ::= V | E1‘E2 | let M1 = x in M2 | setρ(M) | getρ(M1,M2)

ε ::= ∅ | {
lookupρ

} | {
updateρ

} | ε1 ∪ ε2
A ::= unit | Int | Locρ | A1

ε→ A2

Γ `eff ? : unit ! ∅ Γ `eff n : Int ! ∅

Γ, x : A `eff x : A ! ∅
Γ `eff M : A ! ε1 ε1 ⊆ ε2

Γ `eff M : A ! ε2

Γ, x : A1 `eff M : A2 ! ε

Γ `eff λx.M : A1
ε→ A2 ! ∅

Γ `eff M1 : A1 ! ε1 Γ `eff M2 : A1
ε2→ A2 ! ε3

Γ `eff M1‘M2 : A2 ! ε1 ∪ ε2 ∪ ε3

Γ `eff M1 : A1 ! ε2 Γ, x : A1 `eff M2 : A2 ! ε2

Γ `eff let x = M1 in M2 : A2 ! ε1 ∪ ε2

Γ `eff M : Locρ ! ε

Γ `eff getρ(M) : unit ! ε ∪ {
lookupρ

}

Γ `eff M1 : Locρ ! ε1 Γ `eff M2 : Int ! ε2

Γ `eff setρ(M1,M2) : unit ! ε1 ∪ ε2 ∪
{
updateρ

}

Figure 1.1: a simplified region tracking system
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1.3 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

Wadler, Tofte [Tof88], Talpin and Jouvelot [TJ92b] did not give denotational
semantics for their calculi, and we are not familiar with any adequate denota-
tional semantics for arbitrary references that do not involve solving infinite re-
cursive domain equations. Therefore we restrict the system under consideration
to integer references only, which indeed have adequate denotational semantics,
and show how it generalises to arbitrary algebraic effects.

1.3 Call by Push Value

Call-by-push-value (CBPV) is an abstract programming language introduced by
Levy [Lev99], that subsumes the two major flavours of lambda calculus, namely
call-by-name (CBN) and call-by-value (CBV). This subsumption extends be-
yond a simple translation of CBN and CBV into CBPV — computational effect
semantics, possible world semantics, game semantics and other semantic con-
cepts, when defined for CBPV, subsume the known corresponding concepts for
both CBN and CBV following the same translation mentioned above [Lev04].
Thus, we are motivated to define new concepts for CBPV rather than CBN or
CBV, and derive the corresponding concepts for CBN and CBV by translation.

1.3.1 Syntax and Semantics

CBPV discerns syntactically between values A and computations B, and has
the following types:

A ::= UB |
∑

i∈I

Ai | unit | A×A B ::= FA |
∏

i∈I

Bi | A→ B

The type FA is a computation that returns a value of type A. The type UB
is a computation B, thUnked into a value. CBPV has two notions of products,
for values and for computations. The index set I appearing in the sum values
and product computations is assumed to be finite. Note that functions are
computations A→ B, taking a value A to a computation B.

The terms and type system of CBPV are given in figure 1.2. Big-step se-
mantics for CBPV are given in figure 1.3. Levy gives additional semantics for
CBPV: small-step operational semantics which use an auxiliary stack of con-
texts, hence the name call-by-push-value; categorical semantics which use the
existence of a particular adjunction to give semantics to CBPV, and other se-
mantics. Note that the adjunctions in Levy’s categorical semantics arise out
of any strong monad, hence generalise Moggi’s computational lambda calculus
and include the algebraic theory of effects.

1.3.2 Translating CBV and CBN into CBPV

In this section and the next one, we shall consider the simplified version of the
simply typed lambda calculus, whose terms and types appear in figure 1.4. The
CBV and CBN semantics are standard, hence omitted.
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1.3 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

Γ `v
p ? : unit

Γ, x : A `v
p x : A

Γ `v
p V : A Γ, x : A `c

p M : B

Γ `c
p let V be x. M : B

Γ `v
p V : A

Γ `c
p return V : FA

Γ `c
p M : FA Γ, x : A `c

p N : B

Γ `v
p M to x. N : B

Γ `c
p M : B

Γ `v
p thunk M : UB

Γ `v
p V : UB

Γ `c
p force V : B

Γ `v
p V : Aı̂

(̂ı ∈ I)
Γ `v

p (̂ı, V ) :
∑

i∈I

Ai

Γ `v
p V :

∑

i∈I

Ai

〈
Γ, x : Ai `c

p Mi : B
〉

i∈I

Γ `c
p pm V as {〈(i, x).Mi〉i∈I} : B}

Γ `v
p V1 : A1 Γ `v

p V2 : A2

Γ `v
p (V1, V2) : A1 ×A2

Γ `v
p V : A1 ×A2 Γ, x1 : A1, x2 : A2 `c

p M : B

Γ `c
p pm V as (x1, x2).M : B

〈
Γ `c

p Mi : Bi

〉
i∈I

Γ `c
p λ{〈i.Mi〉i∈I} :

∏

i∈I

Bi

Γ `c
p M :

∏

i∈I

Bi

(̂ı ∈ I)
Γ `c

p ı̂‘M : B ı̂

Γ, x : A `c
p M : B

Γ `c
p λx.M : (A→ B)

Γ `v
p V : A Γ `c

p M : (A→ B)

Γ `c
p V ‘M : B

Figure 1.2: terms and type system of CBPV

8



1.3 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

M [V/x] ⇓ T
let V be x. M ⇓ T

return V ⇓ return V

M ⇓ return V N [V/x] ⇓ T
M to x. N ⇓ T

M ⇓ T
force thunk M ⇓ T

Mı̂[V/x] ⇓ T
pm (̂ı, V ) as

{〈(i, x).Mi〉i∈I

} ⇓ T

M [V/x, V ′/y] ⇓ T
pm (V, V ′) as (x, y).M ⇓ T

λ{〈i.Mi〉i∈I} ⇓ λ{〈i.Mi〉i∈I}
M ⇓ λ{〈i.Ni〉i∈I} Nı̂ ⇓ T

ı̂‘M ⇓ T

λx.M ⇓ λx.M
M ⇓ λx.N N [V/x] ⇓ T

V ‘M ⇓ T

Figure 1.3: big-step semantics for CBPV
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1.3 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

x ∈ Id
V ::= x | inl V | inr V | λx.M
M ::= x | inl M | inr M | pm M as {inl x.N1, inr x.N2}

| λx.M | E1‘E2 | let M1 = x in M2

A ::= unit | A1 +A2 | A1 → A2

Γ, x : A `λ x : A

Γ `λ M : A

Γ `λ inl M : A+B

Γ `λ M : B

Γ `λ inr M : A+B

Γ `λ M : A1 +A2 Γ, x : A1 `λ N1 : B Γ, x : A2 `λ N2 : B

Γ `λ pm M as {inl x.N1, inr x.N2} : B

Γ, x : A1 `λ M : A2

Γ `λ λx.M : A1 → A2

Γ `λ M1 : A1 Γ `λ M2 : A1 → A2

Γ `λ M1‘M2 : A2

Γ `λ M1 : A1 Γ, x : A1 `λ M2 : A2

Γ `λ let M1 = x in M2 : A2

Figure 1.4: a simply typed lambda calculus
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1.3 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

unitv B unit
(A+B)v B Av +Bv

(A→ B)v B U (Av → FBv)

xval B x
inl V val B (1, V val)
inr V val B (2, V val)

(λx.M)val B thunk λx.Mprod

xprod B return x

(inl M)prod BMprod to z. return (1, z)

(inr M)prod BMprod to z. return (2, z)

(pm M as inl x.N1, inr x.N2)
prod BMprod to z. pm z as {(1, x).N1

prod,

(2, x).N2
prod}

(λx.M)prod B return thunk λx.Mprod

(M ‘N)prod BMprod to x. Nprod to f. x‘(force f)

(let x = M in N)prod BMprod to x. Nprod

Figure 1.5: translation of CBV into CBPV

First, we describe the translation of CBV into CBPV.
Levy’s translation consists of three functions:

• −v: Translating lambda calculus types into CBPV types.

• −val: Translating lambda calculus value terms V into CBPV values.

• −prod: Translating arbitrary lambda calculus terms into CBPV computa-
tions.

The details of the translation appear in figure 1.5. These translations exhibit
the relation:

V prod ≡ return V val

If we extend the translation −v to contexts Γ = A1, . . . , An by

Γv B A1
v, . . . , An

v

then the following relation holds:

Γ `λ M : A ⇐⇒ Γv `c
p M

prod : F (Av) (1.1)

Now we turn to translating CBN into CBPV. Levy defines a translation
−n mapping CBN types and terms to CBPV computation types and terms,
respectively. The translation is given in figure 1.6.

Again, if we extend the translation −n to contexts Γ = A1, . . . , An by

Γn B UA1
n, . . . , UAn

n

11



1.4 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

unitn B Funit

(A+B)n B F (UAn + UBn)
(A→ B)n B (UAn) → Bn

xn B force x

(inl M)n B return (1, thunk Mn)
(inr M)n B return (2, thunk Mn)

(pm M as {inl x.N1, inr x.N2})n BMn to z. pm z as {inl x.N1
n,

inr x.N2
n}

(λx.M)n B λx.Mn

(N ‘M)n B (thunk Nn)‘Mn

(let x = M in N)n B let thunk Mn be x. Nn

Figure 1.6: translation of CBN into CBPV

then the following relation holds:

Γ `λ M : A ⇐⇒ Γn `c
p M

n : An (1.2)

1.4 Algebraic Theory of Effects

We say that a computational effect is algebraic, if its semantics can be captured
by a collection of equations.

For example, consider global state as a computational effect. Assume that
we have a collection of global regions in memory, indexed by ρ. Then we can
define two operations for each ρ:

• setρ(V1, V2), which sets the location V1 ∈ Locρ in region ρ to the value
V2 ∈ Int.

• getρ(V ), which retrieves the value from location V ∈ Locρ in region ρ.

Thus, after performing setρ(V1, V2), the command getρ(V1) will evaluate
to V2. These generic operations [PP03] can equivalently be presented in a
continuation-passing style fashion:

• Associated with setρ there is an operation updateρ such that for each
location V1, value V2, and term M , the term updateV1,V2

ρ (M) corresponds
to writing V2 in location V1 and then continuing to execute M .

• Similarly, associated with getρ there is an operation lookupρ, such that
for every V1 and term M , the term updateV

ρ (x.M) corresponds to reading
the current value from location V into x, and then executing M .

12



1.4 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

lookupV1
ρ (x.updateV1,x

ρ (x)) = x

lookupV1
ρ (y.lookupV1

ρ (x.M [x, y])) = lookupV1
ρ (x.M [x, x])

updateV1,y
ρ (updateV1,x

ρ (z)) = updateV1,x
ρ (z)

updateV1,x
ρ (lookupV1

ρ (y.M [y])) = updateV1,x
ρ (M [x])

lookupV1
ρ (x.lookupV2

ρ (y.M [x, y])) = lookupV2
ρ (y.lookupV1

ρ (x.M [x, y])), V1 6=V2

updateV1,x
ρ (updateV2,y

ρ (z)) = updateV2,y
ρ (updateV1,x

ρ (z)), V1 6=V2

updateV1,x
ρ (lookupV2

ρ (y.M [y])) = lookupV2
ρ (y.updateV1,x

ρ (M [y])), V1 6=V2

Figure 1.7: equations for global state

Using these operators, the semantics of global state can be captured in seven
equations, given in figure 1.7.

This idea of semantics emerging from equational theories can be extended to
give precise semantics to programming languages [PP01b]. Any set of equations
gives rise to an equational theory, which in turn gives rise to a strong monad,
called the free monad of the equational theory. In the cases of global state,
nondeterminism, exception throwing and IO, the semantics given by equational
theories and the usual monadic semantics coincide. In the previous example,
when there is only one region, the seven equations above give rise to the familiar
global state monad.

We can use this process to give a rigorous definition for an algebraic compu-
tational effect: a computational effect given by a monad is algebraic if its monad
is the free monad of some equational theory. Other examples of algebraic com-
putational effects are errors, input/output, non-determinism and probabilistic
choice [PP02]. Not all monads are free monads of some equational theory, for
instance the continuation monad.

The lookupV1
ρ (x.M) operation is parametrised by the location V1, and its

argument is a computation M that depends on a value x of the stored type, say
Int. Therefore the signature of lookupρ is Locρ; Int.

More generally, we have a set of signatures, Σeff . Each signature is of the
form op: A;A1, . . . , Ak, where each of A and Ai is a primitive type. We assume
that the primitive types are some objects in the intended semantics category,
for example, the singleton {?}, and the sets Int and Locρ. The meaning of
these operations is given by the accompanying equational theory. In the case of
global state, these are the equations of figure 1.7.

Thus, given a collection of primitive types Primitives, operation signatures
Σeff involving these types, and equations involving these operations, we can
consider a corresponding CBPV calculus involving them. Terms in this extended
calculus may include values v from primitive types P ∈ Primitives:

Γ `v
p v : P (1.3)

13



1.4 CHAPTER 1. ALGEBRAIC EFFECT TYPE SYSTEMS

and effect operations, whose semantics is given using their equations:

Γ `v
p V : A

〈
Γ, x : Ai `c

p Mi : B
〉
1≤i≤n

(op: A;A1, . . . , An ∈ Σeff)
Γ `c

p opV 〈x.Mi〉1≤i≤n : B

(1.4)

The algebraic operations updateρ and lookupρ can be used to define the
commands setρ and getρ, by

setρ(V1, V2) B updateV1,V2
ρ (return ?) getρ(V ) B lookupV

ρ (x.return x)

This connection exists in general. Given an algebraic effect of signature

op: α;β1, . . . , βn

the generic operation [PP01b] associated with it is the term

genop(V ) B opV (〈x.return (i, x)〉1≤i≤n) (1.5)

Using rule (1.4), we can derive the type of a generic operation

Γ `v
p V : A

(op: A;A1, . . . , An ∈ Σeff)
Γ `c

p genop(V ) : F (A1 + . . .+An)
(1.6)

In existing programming languages, effects are given using generic operations
and algebraic operations.

An equivalent treatment can be given using Lawvere theories [HP07]. Law-
vere [Law63] proposed abstract (syntactic) categories as a means of treating
universal equations. The operations are replaced by morphisms in a suitable cat-
egory, and the equations are replaced by commutative diagrams. Thus, instead
of talking about an equational theory, one talks about an abstract category.
The commuting diagrams in this category correspond to the valid equations in
the theory. A model for the equational theory corresponds to a functor from
the abstract category into Set (or any other suitable model-class).

Lawvere theories can be composed in various manners [HPP06]. For in-
stance, take L to be the Lawvere theory corresponding to the equations in
figure 1.7 for all ρ, and let Lρ be the corresponding theory corresponding to
these equations for some fixed ρ.

As we have no equations relating effects related to region ρ with effects
related to region ρ′, in the semantics of L the order in which ρ and ρ′ effects are
applied matter. The theory L is called the sum of the theories Lρ. In general,
given Lawvere theories L1 and L2, their sum theory L1 +L2 corresponds to the
equational theory without any equations between terms in L1 and terms in L2.

The preceding example motivates another kind of composition. Operations
on different regions should be independent of each other. Therefore, a more
accurate semantics for region tracking would include equations stating that op-
erations on different regions commute with each other. For example:

updateV1,V2
ρ1

(updateV3,V4
ρ2

(M)) = updateV3,V4
ρ2

(updateV1,V2
ρ1

(M))

14
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The resulting Lawvere theory is called the tensor of the Lawvere theories Lρ.
In general, given Lawvere theories L1 and L2, their tensor theory, L1 ⊗ L2,
corresponds to the theory in which operations from different theories commute
with each other.

1.5 Effect Type System

We annotate CBPV computation types with finite sets of effects. These effect
sets over-approximate the effects the computation will incur. The annotated
types are given by

A ::= UB |
∑

i∈I

Ai | unit | A×A B ::= (FA) ! ε | (
∏

i∈I

Bi) ! ε | (A→ B) ! ε

We also define an auxiliary type B̂, such that B ≡ B̂ ! ε:

B̂ ::= FA |
∏

i∈I

Bi | A→ B

Note that function types have two effect sets associated with them. The
first, outermost, set describes the effects required to produce the function. The
second, inner, effect set describes the effects that take place when the function
is invoked. Similar considerations apply to product computation types.

As in the usual CBPV, we have two kinds of typing judgements, for values
and for computation types:

Γ `v
f V : A Γ `c

f M : B

Let Primitives and Σeff be the primitive types and effect signature of an
algebraic effect theory. The full effect type system for the corresponding CBPV
calculus is given in figure 1.8.

Using this type system, we can derive a rule for typing generic effects:

Γ `v
f V : A

(op: A;A1, . . . , An ∈ Σeff)
Γ `c

f genop(V ) : F (A1 + . . .+An) ! {op} (1.7)

Our type-and-effect system is sound in the following sense. One can induc-
tively define the obvious strip (B) function, which takes an effect annotated type
in our type-and-effect system to a CBPV type. For instance,

strip (Int → (F (unit) ! {update}) ! {lookup}) = Int → F (unit)

Using this function, the following soundness result holds:

Theorem 1. If Γ `f M : A then strip (Γ) `p M : strip (A).
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(v ∈ P )
Γ `v

f v : P
Γ `c

f M : B̂ ! ε ε ⊆ ε′

Γ `c
f M : B̂ ! ε′

Γ, x : A `v
f x : A

Γ `v
f V : A Γ, x : A `c

f M : B

Γ `c
f let V be x. M : B

Γ `v
f V : A

Γ `c
f return V : FA ! ∅

Γ `c
f M : FA ! εM Γ, x : A `c

f N : B̂ ! εN

Γ `v
f M to x. N : B̂ ! εM ∪ εN

Γ `c
f M : B

Γ `v
f thunk M : UB

Γ `v
f V : UB

Γ `c
f force V : B

Γ `v
f V : Aı̂

(̂ı ∈ I)
Γ `v

f (̂ı, V ) :
∑

i∈I

Ai

Γ `v
f V :

∑

i∈I

Ai

〈
Γ, x : Ai `c

f Mi : B̂ ! εi

〉
i∈I

Γ `c
f pm V as {〈(i, x).Mi〉i∈I} : B̂ !

⋃

i∈I

εi}

Γ `v
f V1 : A1 Γ `v

f V2 : A2

Γ `v
f (V1, V2) : A1 ×A2

Γ `v
f V : A1 ×A2 Γ, x1 : A1, x2 : A2 `c

f M : B

Γ `c
f pm V as (x1, x2).M : B

〈Γ `c
f Mi : Bi〉i∈I

Γ `c
f λ{〈i.Mi〉i∈I} : (

∏

i∈I

Bi) ! ∅
Γ `c

f M : (
∏

i∈I

(B̂i ! εi)) ! ε

(̂ı ∈ I)
Γ `c

f ı̂‘M : B̂ ı̂ ! ε ∪ εı̂

Γ, x : A `c
f M : B

Γ `c
f λx.M : (A→ B) ! ∅

Γ `v
f V : A Γ `c

f M : (A→ B̂ ! ε1) ! ε2

Γ `c
f V ‘M : B̂ ! ε1 ∪ ε2

Γ `v
f V : A

〈
Γ, x : Ai `c

f Mi : B̂ ! εi

〉
1≤i≤n

(op: A;A1, . . . , An ∈ Σeff)

Γ `c
f opV 〈x.Mi〉1≤i≤n : B !

n⋃

i=1

εi ∪ {op}

Figure 1.8: generic effect type system
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1.6 Subsumption

In this section we exploit the translations from CBV and CBN to CBPV, and
derive type-and-effect systems for CBV and CBN.

First, we extend our simplified lambda calculus with effect operations. For
any signature op: A;A1, . . . , An, we add a rule:

Γ `λ M : A 〈Γ, xi : Ai `λ Mi : B〉1≤i≤n (op: A;A1, . . . , An ∈ Σeff)
Γ `λ opM 〈xi.Mi〉1≤i≤n : B

(1.8)

Using figure 1.4 and this last rule, we can derive a typing rule for generic effects:

Γ `λ M : A
(op: A;A1, . . . , An ∈ Σeff)

Γ `λ genop(M) : A1 + . . .+An

(1.9)

1.6.1 Subsuming CBV

We extend the translation in figure 1.5 to include effect operations:

(
opM (〈x.Mi〉1≤i≤n)

)prod

BMprod to x. opx(
〈
x.Mi

prod
〉

1≤i≤n
)

and primitive values:
vval B v

This extension preserves relation (1.1), in the following sense:

Theorem 2. Let `λ be a the type system for a simplified lambda calculus ex-
tended with effects of signature Σeff . Let `c

p,`v
p be the CBPV type system cor-

responding to the effects of Σeff .
Then the following relation holds:

Γ `λ M : A ⇐⇒ Γv `c
p M

prod : FAv

The proof is by induction on terms of the simplified lambda calculus, noting
that each typing rule of `λ corresponds to a valid derivation in `c

p,`v
p, that the

end of each such CBPV derivation necessitates the premises of each `λ deriva-
tion, and that the primitive types appearing in each signature are translated to
themselves.

Now we are in the following position: For each lambda calculus term M , we
have a corresponding CBPV termMprod, reflecting its CBV meaning. Using our
type-and-effect system, we can try to associate a type-and-effect judgement with
Mprod. We define type-and-effect judgements for the lambda calculus which are
subsumed by our type-and-effect system for CBPV. This type-and-effect system
is defined in figure 1.9.

As function types are thunked computations, they always have an effect set
thunked inside them. We expose this effect set in the type system by anno-
tating each function type with an effect set. Type judgements take the form
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x ∈ Id ε ⊆fin Σeff P ∈ Primitives v ∈ P
V ::= v | x | inl V | inr V | λx.M
M ::= v | x | inl M | inr M | pm M as {inl x.N1, inr x.N2}

| λx.M | E1‘E2 | let M1 = x in M2

A ::= P | A1 +A2 | A1
ε→ A2

Γ `cbv
λε v : P ! ∅

Γ, x : A `cbv
λε x : A ! ∅

Γ `cbv
λε M : A ! ε1 ε1 ⊆ ε2

Γ `cbv
λε M : A ! ε2

Γ `cbv
λε M : A ! ε

Γ `cbv
λε inl M : A+B ! ε

Γ `cbv
λε M : B ! ε

Γ `cbv
λε inr M : A+B ! ε

Γ `cbv
λε M : A1 +A2 ! ε Γ, x : A1 `cbv

λε N1 : B ! ε1 Γ, x : A2 `cbv
λε N2 : B ! ε2

Γ `cbv
λε pm M as {inl x.N1, inr x.N2} ! ε ∪ ε1 ∪ ε2

Γ, x : A1 `cbv
λε M : A2 ! ε

Γ `cbv
λε λx.M : A1

ε→ A2 ! ∅
Γ `cbv

λε M1 : A1 ! ε1 Γ `cbv
λε M2 : A1

ε2→ A2 ! ε3

Γ `cbv
λε M1‘M2 : A2 ! ε1 ∪ ε2 ∪ ε3

Γ `cbv
λε M1 : A1 ! ε2 Γ, x : A1 `cbv

λε M2 : A2 ! ε2

Γ `cbv
λε let M1 = x in M2 : A2 ! ε1 ∪ ε2

Γ `cbv
λε M : A ! ε0

〈
Γ, xi : Ai `cbv

λε Mi : B ! εi

〉
1≤i≤n (op: A;A1, . . . , An ∈ Σeff)

Γ `cbv
λε opM 〈xi.Mi〉1≤i≤n : B !

n⋃

i=0

εi

Figure 1.9: a CBV type-and-effect system
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Γ `cbv
λε M : A ! ε. Intuitively, this judgement means that evaluating M will only

cause computational effects in ε.
In order to relate the CBV and CBPV type-and-effect systems, we present

a translation from the former to the latter, using the original translation for
terms, but changing the translation for types:

P v′ B P (P ∈ Primitives)
(A+B)v

′
B Av′ +Bv′

(A ε→ B)v
′
B U(Av′ → F (Bv′ ! ε))

(1.10)

The following theorem shows that this type-and-effect system captures the
full expressive power of our CBPV system, for the lambda calculus:

Theorem 3. For any CBV type-and-effect context Γ, lambda calculus term M ,
CBV type A and effect set ε, the following holds:

Γ `cbv
λε M : A ! ε ⇐⇒ Γv′ `f M

prod : FAv′ ! ε

From this system, we can also derive a rule for the generic operations:

Γ `λ M : A ! ε
(op: A;A1, . . . , An ∈ Σeff)

Γ `λ genop(M) : A1 + . . .+An ! ε ∪ {op} (1.11)

By choosing our effects to be lookupρ and updateρ for all ρ ∈ Regions, with
suitable equations, we can instantiate the CBV type-and-effect system to obtain
the simplified Wadler’s type-and-effect system from figure 1.1.

1.6.2 Subsuming CBN

We now turn to CBN. We extend the translation in figure 1.6 to include effect
operations:

(
opM (〈x.Mi〉i∈I)

)n BMn to x. opx(〈x.let thunk return x be x. Mi
n〉i∈I)

and value types:
vn B return v

This extension preserves relation (1.2), in the following sense:

Theorem 4. Let `λ be the type system for a simplified lambda calculus extended
with effects of signature Σeff . Let `c

p,`v
p be the CBPV type system corresponding

to the effects of Σeff
v.

Then the following relation holds:

Γ `λ M : A ⇐⇒ Γn `c
p M

n : An
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x ∈ Id ε ⊆fin Σeff P ∈ Primitives v ∈ P
V ::= v | x | inl V | inr V | λx.M
M ::= v | x | inl M | inr M | pm M as {inl x.N1, inr x.N2}

| λx.M | E1‘E2 | let M1 = x in M2

A ::= P ! ε | (A1 +A2) ! ε | (A1 → A2) ! ε

Â ::= P | A1 +A2 | A1 → A2 (hence A ≡ Â ! ε)

Γ `cbn
λε v : P ! ∅

Γ, x : A `cbn
λε x : A

Γ `cbn
λε M : Â ! ε1 ε1 ⊆ ε2

Γ `cbn
λε M : Â ! ε2

Γ `cbn
λε M : A

Γ `cbn
λε inl M : A+B ! ∅

Γ `cbn
λε M : B

Γ `cbn
λε inr M : A+B ! ∅

Γ `cbn
λε M : (A1 +A2) ! ε0 Γ, x : A1 `cbn

λε N1 : B ! ε1 Γ, x : A2 `cbn
λε N2 : B ! ε2

Γ `cbn
λε pm M as {inl x.N1, inr x.N2} : B ! ε0 ∪ ε1 ∪ ε2

Γ, x : A1 `cbn
λε M : A2

Γ `cbn
λε λx.M : (A1 → A2) ! ∅

Γ `cbn
λε M1 : A1 Γ `cbn

λε M2 : (A1 → Â2 ! ε1) ! ε2

Γ `cbn
λε M1‘M2 : Â2 ! ε1 ∪ ε2

Γ `cbn
λε M1 : A1 Γ, x : A1 `cbn

λε M2 : A2

Γ `cbn
λε let M1 = x in M2 : A2

Γ `cbn
λε M : Â ! ε0

〈
Γ, x : Âi ! ∅ `cbn

λε Mi : B̂ ! εi

〉
1≤i≤n

(op: A;A1, . . . , An ∈ Σeff)

Γ `cbn
λε opM 〈xi.Mi〉1≤i≤n : B̂ !

n⋃

i=0

εi ∪ {op}

Figure 1.10: a CBN type-and-effect system
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The proof is similar to the proof of theorem 2. This time, we rely on the
fact that all primitive types P are translated into FP .

Just as with CBV, we can now associate a CBPV type-and-effect judgement
with each term. We present the system in figure 1.10.

As CBN types are translated into computations, they all have an effect set
associated with them. Therefore, the CBN type-and-effect system associates an
effect set with each type. Just as with the CBPV system, we define an auxiliary
type Â, such that A ≡ Â ! ε.

Another noteworthy property of this system involves contexts. As each type
is of the form Â ! ε, our typing judgements are of the form

x1 : Â1 ! ε1, . . . , xn : Ân ! εn `cbn
λε M : Â ! ε

Intuitively, such judgement means that given identifiers xi that will cause effects
from εi when evaluated, the term M will cause effects from ε when evaluated.

In order to relate the CBN and CBPV type-and-effect systems, we present
a translation for CBN types:

(Â ! ε)n
′
B Ân′ ! ε

P n′ B FP (P ∈ Primitives)
(A+B)n

′
B F (UAn′ + UBn′)

(A→ B)n
′
B (UAn′) → Bn′

(1.12)

The following theorem shows that this type-and-effect system captures the
full expressive power of our CBPV system, for the lambda calculus:

Theorem 5. For any CBN type-and-effect context Γ, lambda calculus term M ,
CBV type-and-effect A, the following holds:

Γ `cbn
λε M : A ⇐⇒ Γn′ `f M

n′ : FAn′

From this system, we can also derive a rule for the generic operations:

Γ `λ M : A ! ε
(op: A;A1, . . . , An ∈ Σeff)

Γ `λ genop(M) : A1 + . . .+An ! ε ∪ {op} (1.13)

The resulting type system was anticipated by Benton, Moggi and Hughes
[BHM00]1. In their words:

The first thing to remark about the form of a type and effect judge-
ment is that an effect appears on the right of the turnstile, but not
on the left. This is because we are only considering CBV languages,
and that means that at runtime free variables will always be bound
to values, which have no effect. An effect system for an impure CBN
language, were there any such thing, would have pairs of types and
effects in the context too.

1Chapter “Type and Effect Systems”, section 2, paragraph beginning with “The first thing
to remark...”.
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The programming language Scala [OCD+06] is impure, and has CBN parame-
ters. Up to this day, only one type-and-effect system has been suggested and
implemented for Scala [RMO09]. This type-and-effect system only tracks one
kind of effect: delimited continuations. As they are not covered by the alge-
braic theory of effects, we cannot compare the two systems. However, a general
purpose type-and-effect system for Scala is an ongoing research topic, and we
hope this work to contribute to this research.

1.7 Conclusions and Further Work

We have given a generic effect type system, subsuming the familiar CBV sys-
tems based on Talpin and Jouvelot. We have given a novel CBPV effect type
system. We have instantiated our generic system to obtain a CBN type sys-
tem. Therefore, the algebraic theory of effects enables a generic syntactic effect
analysis.

The next step is to try to use the effect analysis to present coherent se-
mantics, as described in the introduction. Doing so might prove complicated,
or require changes in the proposed type system. Such changes might break
subsumption of existing systems. The difference between the systems would be
interesting to note, and will shed light on inadequacy of either system or seman-
tics. Failure to form any kind of denotational semantics will limit the interest in
our type system, but its generality as a syntactic analysis is still of interest, as
it allows us to deal generally with the syntactic issues of effect analysis: effect
inference, polymorphic effect type systems and proof theoretic results, as well
as operational semantics. Even just the syntactic results can be compared with
Marino’s and Millstein’s work on generic effect type systems [MM09], as it is
purely syntactic.

With his translation, Wadler [Wad98] also presented a type inference algo-
rithm for both the Talpin and Jouvelot and the monadic type systems. We
would like such an algorithm in the general setting. If such an algorithm is not
possible, we would like to know what limitations does the system suffer with
respect to inference.

The over-approximation of the effects involving each term is reflected in our
system by the subtyping rule:

Γ `c
p B ! ε ε ⊆ ε′

Γ `c
p B ! ε′

However, polymorphism seems like a viable solution as well. Polymorphism is
especially attractive if we consider high-order functions. For instance, a function
that may ignore its parameter might be typed:

∀ε
(
(A ε→ B) ∅→ C

)

While a function that uses both arguments might be typed:

∀ε1, ε2
(
(A ε1→ B) ∅→ (C ε2→ D) ε1∪ε2→ E

)
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We would be interested in such generic type systems, how they relate to subtyp-
ing systems, and whether they can both be incorporated in the same system.

Wadler [Wad98] also gave operational semantics to both effect type systems,
the Talpin and Jouvelot style and the monadic. It would be interesting to see
how the existing operational semantics to algebraic effects [PP01a, Plo09], or
variants thereof, relate to Wadler’s operational semantics: bisimulation or even
subsumption of Wadler’s semantics by the existing semantics.

If coherent denotational semantics are found and verified to subsume existing
systems and previous approaches, there are several avenues which we would like
to explore.

The algebraic theory of effects also contains a notion of effect deconstructors,
such as exception handlers [PP09]. We would like to add them to both effect
analysis and the resulting semantics. To incorporate them we add effects to
handler types. Handler types are given by:

D ::= (A; ε) ⇒ B

That is, handlers are parametrised by a value of type A, and when handling a
computation whose effect set is ε, will perform a computation of type B.

We have a prototype rule for effect handlers:

〈
x0 : A0, 〈xv : Av, xi : U((Ai → B) ! ∅)〉1≤i≤n `c

f Mop : B̂ ! εop
〉

op: A;A1,...,An∈ε

`h
f x0.{

〈
opxv

(force xc) = Mop

〉} : (A0; ε) ⇒ B̂ !
⋃

op∈ε

εop

Informally, if, for each effect in the handled set ε, the handler will perform
a computation of type B, then the handler has the type (A; ε) ⇒ B. Recall
that, since our system uses subtyping, each handler may have multiple types,
corresponding to handling different effect sets.

Handler invocation is typed as follows:

Γ `c
f M : FAM ! εM `h

f H : (A; εM ) ⇒ B Γ `v
f V : A Γ, x : AM `c

f N : B

Γ `c
f try M with H(V ) as x. N : B

Thus, the handler removes all previous effects and causes only the effects in its
type.

We still need to verify these rules subsume existing effect type systems (for
example, Benton’s and Kennedy’s MIL-lite type system [BK99]). Then, seman-
tics and inference need to be dealt with.

Another interesting research direction is to translate the semantic results
from the language of Lawvere theories to monads. Once we know the semantic
construction in terms of monads, we can try to generalise it from algebraic
theories to arbitrary monads, or show that it cannot be generalised.

The notion of effects in the context of the typing judgement is reminiscent
of Atkey’s work on parameterised monads [Atk09]. Atkey gives an effect type
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system for permissions, which has a single effect on each side of the judgement,
which correspond to the sets of permissions required before and available after
execution of the term in question. While related to our work, we have not
spotted a direct relation between the two concepts yet.

In his work, Atkey abstracts from sets and unions and talks about a abstract
operations. It might be possible to abstract the system from sets into a more
general structure, perhaps a semilattice, or semigroup of some kind.

As our syntactic analysis already captures existing systems, a proof theoretic
analysis for it will include accounts for the covered systems. Therefore, we are
interested in pursuit of the Curry-Howard correspondence for our type system,
and analysis of the resulting logic. In particular, it would be interesting to note
whether it is constructive. If it is not always constructive, we would like to know
what conditions are required to make it constructive, and for which effects these
conditions are not met.
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Chapter 2

Principal Logic for Access
Control

2.1 Introduction

Current day computing involves many distributed systems. With the internet,
cluster computing, distributed file systems and many other examples, centralised
control is impossible. In such environments, different agents, or principals,
have different capabilities: not everyone can access any web page, and only
certain users can access a certain file. Deciding which principal can access
which capability is the interest of access control.

The distributed nature of today’s system forces us to break from the tra-
ditional centralised approach and consider distributed access control: we can
no longer ask a centralised mechanism whether access should be granted, but
localised access control monitors should reason about pieces of information ob-
tained from several sources and base their decisions on them.

For instance, the monitor might have obtained the following pieces of infor-
mation:

• A says all of B’s friends can access her photographs.

• If B says C is his friend, then C is his friend.

• B says D is his friend.

The controller should deduce that “A says D can access her photographs”, and
as A controls all access to her photographs, D should be granted access.

Thus, there is a need for a logical framework modelling our intuitive under-
standing of access control so that systems and policies could be proved accu-
rately formulated and proved correct. We propose a logic for access control that
extends the expressiveness of existing logics.
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DCC, the Dependency Core Calculus, is a calculus used by Abadi to analyse
dependencies in programs [ABHR99]. By pursuing the Curry-Howard corre-
spondence, Abadi tried to use the resulting logic to reason about access control
[Aba06]. However, the logic corresponding to DCC was too powerful, and one
could prove undesirable properties, such as A says B says ϕ ⇐⇒ B says
A says ϕ [Aba07].

As a consequence, Abadi considered a subset of DCC, which he called Cut-
Down DCC, CDD for short [Aba08]. CDD appears to better serve the require-
ments of an access control logic. However, its main disadvantage is its lack of
relation between principals.

Principals usually come in hierarchies, where some principals are more trus-
ted than others. If A is more trusted than B, then if A says something, we can
deduce that B also says it. In its simplest form, CDD simply tags each statement
with its source. Thus, there is no notion of trust between principals. One way
to encode this notion is using second order propositional logic: everything that
A says can be regarded as said by B.

Other flavors of CDD [GA08] allow for more degrees of expressiveness: in-
corporating propositions relating principals, and Boolean operations between
principals that result in new principals.

We investigate whether CDD can be embedded, soundly and completely, in a
more expressive access control logic, which we call principal logic. Principal logic
treats principals as propositions, allowing us to define operations on principals
using the existing logical connectives.

Our main contributions are:

• We follow the principals-as-propositions idea, and present a logic that
soundly extends CDD, by its algebraic models and Kripke semantics.

• We show how compound operations on principals can be expressed in the
logic.

This chapter is organised as follows. First, section 2.2 introduces CDD and
its various flavours. Next, section 2.3 presents a short overview of Heyting
algebras and quantales. Then, in section 2.4, we present our logic, principal
logic: its syntax, its algebraic semantics, a canonical model, a translation of
CDD into principal logic and its Kripke semantics. Finally, we conclude in
section 2.5 along with suggestions for further work.

2.2 CDD

CDD formulae are given by the following syntax [Aba08]:

s ::= true | s ∨ s | s ∧ s | s ⊃ s | A says s | X | ∀X.s

where A ranges over elements of a set K of principals and X ranges over a set
of propositional variables. The variable X is bound in ∀X.s.
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[Var] Γ, s,Γ′ ` s [True]
Γ ` true

[Lam]
Γ, s1 ` s2

Γ ` s1 ⊃ s2
[App]

Γ ` s1 ⊃ s2 Γ ⊃ s1

Γ ` s2

[Pair]
Γ ` s1 Γ ` s2

Γ ` s1 ∧ s2
[Proj]

Γ ` s1 ∧ s2 i ∈ {1, 2}
Γ ` si

[Inj]
Γ ` si i ∈ {1, 2}

Γ ` s1 ∨ s2
[Case]

Γ ` s1 ∨ s2 Γ, s1 ` s Γ, s2 ` s
Γ ` s

[Gen]
Γ ` s

(X /∈ FV(Γ)
Γ ` ∀X.s

[Spec]
Γ ` ∀X.s
Γ ` s[t/X]

[Unit]
Γ ` s

Γ ` A says s
[Bind]

Γ ` A says s Γ, s ` A says t

Γ ` A says t

Figure 2.1: proof system for CDD

The proof system for CDD is given in figure 2.1. Basic CDD does not
deal with relationships between principals. It only deals with the interplay of
deduction and the says relation.

One way to reason about the relationship between principals is using the
speaks-for relation. We say that A speaks for B, and write A⇒ B, if whenever
A makes a claim, we can deduce that B makes the same claim. Using second-
order propositional logic, we can encode the speaks-for relation as follows:

A⇒ B B ∀X.(A says X) ⊃ (B says X)

Abadi [GA08] investigated the use of a primitive construction for the speaks-
for relation. He extends the syntax with the construction s ::= · · · | A ⇒ A,
and adds four axioms, given in figure 2.2.

Apart from relating principals to each other, policies may require the notion
of compound principals — principals expressed using operations on other prin-
cipals. For example, the principal A quoting B, written A |B, corresponds to a
principal that only makes claims A claims B made:

(A |B) says s ⇐⇒ A says (B says s)

One can also define conjunction, disjunction and other operations on principals.
Abadi [GA08] presents such an extension to CDD. Principals A are now

given by the following syntax:

A ::= a | A ∧A | A ∨A | A ⊃ A | > | ⊥
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[Refl] ` A⇒ A

[Speaking-for] ` (A⇒ B) ⊃ (A says s) ⊃ (B says s)

[Trans] ` (A⇒ B) ⊃ (B ⇒ C) ⊃ (A⇒ C)

[Handoff] (B says (A⇒ B)) ⊃ (A⇒ B)

Figure 2.2: additional axioms for CDD with a primitive speaks-for relation

[trust] ` (⊥ says s) ⊃ s

[untrust]
A ≡ >

` A says ⊥

[cuc’] ` ((A ⊃ B) says s) ⊃ (A says s) ⊃ (B says s)

Figure 2.3: additional axioms for CDD with Boolean principals

where a ranges over some set of atomic principals. Equality between principals,
A ≡ B, is defined to be equality between them in classical logic. Thus the set
of principals becomes a Boolean algebra. The inference rules of the basic CDD
are extended with the rules in figure 2.3. The speaks-for relation can then be
expressed as (A ⊃ B) says ⊥.

2.3 Heyting Algebras and Quantales

A lattice is a partially ordered set (poset), (A,≤), in which every two elements,
a, b ∈ A have a least upper bound, a ∨ b, also called their join, and a greatest
lower bound, a ∧ b, also called their meet. A lattice is bounded if it has a least
element ⊥ and a greatest element >. The least and greatest elements are the
units for the join and the meet operations, respectively.

A Heyting algebra is a bounded lattice (H,≤) which admits a relative pseudo-
complement operator ⊃, satisfying the following relation for all a, b ∈ A:

x ∧ a ≤ b ⇐⇒ a ⊃ b

In other words, a bounded lattice is a Heyting algebra if and only if, for all
a, b ∈ A, there exists a greatest element, denoted by a ⊃ b, in the set

{x|x ∧ a ≤ b}
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In categorical terms, a ⊃ b is the exponent ba, hence a Heyting algebra is a
Cartesian closed lattice.

A complete Heyting algebra is a partially ordered set, (H,≤), which has finite
meets and arbitrary joins, which satisfies the following infinite distributivity law
for all x ∈ H and S ⊆ H:

x ∧
∨
S =

∨
{x ∧ a|a ∈ S}

In all complete Heyting algebras, arbitrary meets are defined by
∧
S B

∨
{x|x is a lower bound of S}

The relative pseudo-complement of a and b is

a ⊃ b B
∨
{x|x ∧ a ≤ b}

Complete Heyting algebras form a complete and sound model class for Intu-
itionistic Propositional Logic (IPL): Given a complete Heyting algebra, (H,≤),
any assignment of elements of A to propositional variables gives rise to an in-
terpretation of every IPL formulae as a value in A: propositional variables are
interpreted according to the assignment; the logical connectives ∨, ∧ and ⊃ are
interpreted using the Heyting algebra operations ∨, ∧ and ⊃, respectively; true
and false are interpreted by > and ⊥ respectively; and the quantifiers ∀ and
∃ are interpreted by arbitrary meets and joins, respectively. It turns out that
an IPL formula is provable in IPL if and only if it takes the value > in any
complete Heyting algebra (A,≤) under every assignment.

Quantales [Ros90, Gol06] are possibly noncommutative generalisations of
complete Heyting algebras.

A posemigroup 〈A,≤,⊗〉 is a poset (A,≤) together with an associative binary
operation ⊗ that is monotone in each argument:

x1 ≤ y1, x2 ≤ y2 =⇒ x1 ⊗ x2 ≤ y1 ⊗ y2

Note that the operation ⊗ is not necessarily commutative. A posemigroup
〈A,≤,⊗〉 is residuated if there exist operations ⊃l, ⊃r called left and right
residuals of ⊗, satisfying the following equations:

x⊗ a ≤ b ⇐⇒ x ≤ a ⊃l b

a⊗ x ≤ b ⇐⇒ x ≤ a ⊃r b

In categorical terms, a ⊃l − is the right adjoint to −⊗ a.
A quantale 〈Q,≤,⊗〉 is a complete poset with an associative operation ⊗,

which satisfies the following distributivity laws for all a ∈ Q and S ⊆ Q:

(
∨
S)⊗ a =

∨
{x⊗ a|x ∈ S}

a⊗ (
∨
S) =

∨
{a⊗ x|x ∈ S}
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Each quantale has residuals, defined by

a ⊃l b B
∨
{x|x⊗ a ≤ b}

a ⊃r b B
∨
{x|a⊗ x ≤ b}

2.4 Principal Logic

We try to interpret principals as propositions in the calculus. Then, we try to
give algebraic semantics to CDD using a suitable algebraic structure.

As CDD contains IL, we require the structure to have a Heyting algebra
structure. We choose to interpret the says relation as a multiplicative left
implication (, right adjoint to the quoting relation ⊗. Thus the CDD formula

(A quotesB) says ϕ ⇐⇒ A says (B says ϕ)

manifests as the element

(a⊗ b) ( ϕ ⇐⇒ a ( (b ( ϕ)

of our structure, for suitable a, b and ϕ.
We have chosen to use quantales to model the access control operators.
However, a Heyting algebra and quantalic structure do not suffice. Instan-

tiating the CDD unit axiom yields the following property:

a ≤ b ( a (unit)

or equivalently:
a⊗ b ≤ a

Abadi [Aba08] showed that the C4 axiom holds in CDD:

(A says A says X) ⊃ A says X

Therefore every model should satisfy the following inequality:

a ( (a ( b) ≤ a ( b (multiplication)

or, equivalently:
a⊗ b ≤ a⊗ b⊗ b

We call these two inequalities the monadic properties. It turns out the
monadic properties suffice for introducing a sound model class for CDD.

Therefore, let us define the syntax of principal logic:

Definition 6 (principal logic). Principal logic formulae are given by

ϕ ::= true | false | P | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ ⊃ ϕ | ϕ⊗ ϕ | ϕ ( ϕ

where P ranges over propositional variables.
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We give semantics to the logic via a model class of algebraic structures called
principal algebras.

In this section, we will define principal algebras and state some of their
properties. Then we will present a canonical model — a principal algebra con-
structed out of any partial order. We shall also present a sound translation of
CDD into principal logic. Finally, we will present Kripke semantics for principal
logic and state some of their properties.

2.4.1 Principal Algebras

Definition 7 (principal algebra). A principal algebra is a triple 〈P,≤,⊗〉,
where 〈P,≤〉 forms a complete Heyting algebra, 〈P,≤,⊗〉 forms a quantale,
and the two monadic properties are satisfied:

unit: a⊗ b ≤ a multiplication: a⊗ b ≤ a⊗ b⊗ b

Given a principal algebra 〈P,≤,⊗〉, we denote the meet, join and implication
operations of the complete Heyting algebra by ∧, ∨ and ⊃, respectively, and
the top and bottom elements by > and ⊥, respectively. We denote the left
implication by (. That is, x ≤ a ( y if and only if x⊗ a ≤ y.

Definition 8 (algebraic model). An algebraic model for principal logic is a
principal algebra 〈P,≤,⊗〉 and an interpretation of each propositional variable
P as an element JPK of P .

Each algebraic model gives rise to a natural interpretation of principal logic
in the obvious way:

Definition 9 (interpretation in a model). Given an algebraic model 〈P, J−K〉,
the interpretation map can be extended inductively to formulae of principal logic
by

JtrueK B > JfalseK B ⊥
JPK B JPK Jϕ1 ∨ ϕ2K B Jϕ1K ∨ Jϕ2K

Jϕ1 ∧ ϕ2K B Jϕ1K ∧ Jϕ2K Jϕ1 ⊃ ϕ2K B Jϕ1K ⊃ Jϕ2K
Jϕ1 ⊗ ϕ2K B Jϕ1K ⊗ Jϕ2K Jϕ1 ( ϕ2K B Jϕ1K ( Jϕ2K

The element JϕK is called the interpretation of ϕ in the model.
We define the interpretation of any set of formulae Γ as their conjunction:

JΓK B
∧

ϕ∈Γ

JϕK

We intend principal logic not to have quantification. However, principal alge-
bras can interpret quantifiers as well. Moreover, as CDD includes the universal
quantifier, we include it to prove soundness. The procedure is standard: we add
the notion of an assignment of values in a model to propositional variables, and
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how it gives rise to an interpretation. Then, the interpretation of quantified
formulae is:

J∀X.ϕKσ B
∧

x∈P

JϕKσ[X 7→x] J∃X.ϕKσ B
∨

x∈P

JϕKσ[X 7→x]

The notions of a model and interpretation give rise to logical entailment:

Definition 10 (algebraic validity and entailment). Let Γ be a set of formulae,
ϕ a formula and M an algebraic model.

We say that ϕ is valid in M , or that M models ϕ, and write M |=A ϕ, if
JϕK = >.

We say that Γ entails ϕ (algebraically), and write Γ |=A ϕ, if, for every
model M : if M |=A ψ for all ψ ∈ Γ, then M |=A ϕ.

By observing that every model M and element a ∈ M give rise to a model
Ma B {x ≤ a|x ∈M}, we obtain an alternative criterion for entailment:

Theorem 11. For every formulae set Γ and formula ϕ, Γ |=A ϕ if and only if
JΓK ≤ JϕK in every model.

Using the previous theorem, we can prove the following theorem, which allow
us to express operations on principals in our logic:

Theorem 12. For all formulae ϕ1, ϕ2, ψ, ψ1 and ψ2, we have:

1. |=A ((ϕ1 ⊗ ϕ2) ( ψ) ⊂⊃ (ϕ1 ( (ϕ2 ( ψ)).

2. |=A ((ϕ1 ∨ ϕ2) ( ψ) ⊂⊃ ((ϕ1 ( ψ) ∧ (ϕ2 ( ψ)).

3. |=A ((ϕ1 |=A ψ1) ∧ (ϕ2 |=A ψ2)) ⊃ ((ϕ1 ∧ ϕ2) ( (ψ1 ∧ ψ2).

where ϕ ⊂⊃ ψ stands for (ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ) .

Part 1 of the theorem, encourages us to interpret the quoting operation
between principals using ⊗: the principal A quotes B will be represented as
the formula PA ⊗PB .

Part 2 of the theorem lets us express the conjunction principal [ABLP93,
GA08] A ∧B by the formula PA ∨PB .

Finally, part 3 of the theorem highlights a possible candidate for the dis-
junction principal A ∨ B, which represents the group that only A and B are
members of: the formula PA ∧PB .

Thus we have found that our model class allows us to unify principal and
propositional operations.

2.4.2 Canonical Model

We investigated a method to build a canonical model P out of any given princi-
pal hierarchy. By principal hierarchy, we assume given a partial order 〈H,≤〉 of
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principals. Following Abadi [Aba07], the order reflects trust in reverse correla-
tion, thus when a ≤ b then a is more trusted than b. The model P is a principal
algebra, and H can be embedded in P in reverse order.

The construction is done in two stages.
First, we consider the free partially ordered semigroup 〈W,≤, |〉 over H,

making | monotone and satisfying the (reverse) monadic properties:

a ≤ a | b a | b | b ≤ a | b
Note that the two reverse monadic properties are equivalent to − | b being
a monad, for all b, as in W there is at most one morphism between any two
objects.

Thus we obtain a posemigroup of principals W with a monotone operation |
that satisfies the monadic properties. This kind of structure may be the starting
point of the construction in some situations, for instance in the investigation of
our Kripke semantics (subsection 2.4.4). We shall construct a principal algebra
out of any such W .

The Sierpinski space O consists of ⊥ ≤ >. Let P be the set of all order-
preserving functions fromW to O. This set is no other than the functor category
OW . Let y : W → P be the covariant Yoneda embedding, y : x 7→ Hom (x,−).
The mapping y embeds W within P — it is injective on the elements of W .
The existence of such an embedding is guaranteed, as W is O-enriched [ML98].

The partially ordered set P inherits a binary operation from W , using the
Day convolution [Day71, Day70]:

(F ⊗G)(z) =
∨

a|b≤z

F (a) ∧G(b)

It turns out that P is a principal algebra, allowing the definition of the
operators ⊃ and (. The covariant Yoneda embedding from W to P reverses
the order and maps the operation | to ⊗.

We used the above construction to investigate the relationship between the
algebraic model class and the Kripke semantics defined below (subsection 2.4.4).
We also expect to use this construction when proving completeness of CDD in
our model class.

2.4.3 CDD Translation

Principal algebras form a sound model class for CDD. We define a translation
〈|−|〉 of CDD formulae to principal logic formulae with universal quantification
over propositions. The translation amounts to translating A says into 〈|A|〉 (:

〈|A says ϕ|〉 B 〈|A|〉 ( 〈|ϕ|〉 〈|ϕ ∨ ψ|〉 B 〈|ϕ|〉 ∨ 〈|ψ|〉
〈|ϕ ∧ ψ|〉 B 〈|ϕ|〉 ∧ 〈|ψ|〉 〈|ϕ ⊃ ψ|〉 B 〈|ϕ|〉 ⊃ 〈|ψ|〉
〈|∀X.ϕ|〉 B ∀X. 〈|ϕ|〉 〈|true|〉 B true

where the principal A is translated into a unique propositional variable PA.
Our translation is sound:
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Theorem 13. If Γ ` ϕ is provable in CDD, then 〈|Γ|〉 |=A 〈|ϕ|〉.

2.4.4 Kripke Semantics

Kripke semantics were introduced by Kripke [Kri63] to give a model theory to
modal logic and intuitionistic logic. In this section we present Kripke semantics
to principal logic and some of its properties, and prove soundness with respect
to the algebraic semantics.

Definition 14 (Kripke models). A (principal) Kripke model is a quadruple
〈W,≤, |, L−M〉 consisting of a monotone associative operator | over a partially
ordered set 〈W,≤〉, satisfying the monadic properties:

a ≤ a | b a | b | b ≤ a | b
and a map L−M assigning an upward closed subset of W to every propositional
variable:

a ≤ b, a ∈ LPM =⇒ b ∈ LPM
We shall call the elements of K principals, or worlds.

The notion of validity in a Kripke model arises out of the notion of a world
forcing a formula to be valid:

Definition 15 (forcing). Given a (principal) Kripke model 〈W,≤, |, L−M〉, we
define a forcing relation w ° ϕ between elements of W and propositions in
principal logic as follows:

• w ° P iff w ∈ LPM.
• w ° ϕ1⊗ϕ2 iff there exist w1, w2 in W , satisfying w1 | w2 ≤ w, such that
wi ° ϕi for i = 1, 2.

• w ° ϕ ( ψ iff for all w′ in W : if w′ ° ϕ then w ⊗ w′ ° ψ.

• The forcing relation is defined as usual for the IL portion:

– w ° true for all w ∈W .
– w 6° false for all w ∈W .
– w ° ϕ1 ∧ ϕ2 iff w ° ϕi, for both i = 1, 2.
– w ° ϕ1 ∨ ϕ2 iff w ° ϕi, for at least one 1 ≤ i ≤ 2.
– w ° ϕ1 ⊃ ϕ2 iff for all w′ ≥ w: if w′ ° ϕ1 then w′ ° ϕ2.

Thus, using the above definition, the following definition is standard:

Definition 16 (Kripke validity and entailment). Given a (principal) Kripke
model W , we say that ϕ is valid in W , or that W models ϕ, and write W |=K ϕ,
if for all w ∈W , w ° ϕ.

Given a set of formulae Γ and a formula ϕ, we say that Γ entails ϕ in Kripke
semantics, and write Γ |=K ϕ, if for every Kripke model W , for which W |=K ψ
for all ψ ∈ Γ, we also have W |=K ϕ.
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As usual for intuitionistic Kripke semantics, the notion validity is monotone
in the following sense:

Theorem 17 (monotonicity of Kripke semantics). Let K be a Kripke model.
If w ° ϕ then for any w′ ≥ w, we also have w′ ° ϕ.

Any Kripke model 〈W,≤, |, L−M〉 allows encoding its principals w ∈ K as
propositions, by interpreting a propositional variable Pw by:

LPwM B {w′ ∈W |w′ ≥ w}

Theorem 18. If LPwM = {w′ ∈W |w′ ≥ w}, then v ° Pw ( ϕ iff v | w ° ϕ.

The following lemma ties Kripke models with principal algebras:

Lemma 19. For any Kripke model 〈W,≤, |, L−M〉, the canonical principal alge-
bra constructed out of W with the interpretation JPK B yLPM, defined using the
Yoneda embedding, satisfies:

w ° ϕ ⇐⇒ JϕK (w) = >

An immediate corollary of the previous lemma is the following completeness
result:

Corollary 20 (Kripke completeness). Kripke models are sound: If Γ |=A ϕ
using principal algebras, then Γ |=K ϕ using Kripke models. Consequently,
Kripke semantics can be used to model CDD.

We still need to investigate soundness of Kripke models in the class of prin-
cipal algebras. Also, the Kripke semantics highlight the following possible in-
compatibility of principal logic and CDD:

In their modal deconstruction of CDD, Abadi and Garg [GA08] give Kripke
semantics to various flavours of CDD. As they do not have an inherent quoting
operation, the partial order in each model does not have a semigroup structure.
Their semantics for formulae of the form A says ϕ follows the scheme

w ° A says ϕ iff for every w′ ≥ w, . . .

Thus, the notion of A says ϕ depends only on worlds extending the current
world. As our Kripke semantics depend on all possible worlds w′, this incom-
patibility might be an indication for a difference between semantics.

As we have already shown soundness of CDD and completeness of Kripke
models, this incompatibility can be one of two kinds. It may be caused by
incompleteness of principal algebras: perhaps there are formulae that are true
in principal logic but not provable in any of the flavours of CDD. It may also
be caused by unsoundness of Kripke models: there might be formulae that are
true in all Kripke models, but not true in all principal algebras.
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2.5 Conclusion and Further work

We have presented a logic into which CDD can be soundly embedded. The
logic treats principals and propositions equally, and admits some operations
on principals using the existing connectives. The logic is given in terms of
an algebraic model class and of Kripke semantics. The Kripke semantics are
complete in the algebraic model class.

The first next step is to investigate the completeness of CDD in the model
class of principal logic — whether any CDD formulae that is true in all principal
algebras is provable in any of the flavours of CDD. As CDD is the current de-
facto authority on access control, if it is indeed incomplete in our model class,
we would better have good reasons to want to prove those formulae that are
semantically true but unprovable in CDD. If we cannot find such good reasons,
we should change our model class, or let go of the idea.

However, changing the model class will not be straightforward, as the two
monadic properties follow directly from our translation of CDD. Thus, lack of
completeness without sufficient justification will put an end to the principals-
as-propositions idea.

If we do manage to prove completeness in some form, then we should devise a
proof system, both sound and complete, in the model class of principal algebras.
The fact that we have two kinds of arrows may introduce complications. A pos-
sible approach would be the same as adopted by bunched logic [OP99, Pym02],
albeit noncommutative.

Once we expose the algebraic structure in a proof system, we would like
to investigate how the other principal operators [ABLP91] can be expressed in
principal logic, what theorems arise out of them, and establish the relation of
principal logic to the various flavors of Abadi’s CDD [GA08].

In particular, we would like to investigate whether the speaks-for relation can
be expressed in principal logic without quantification. Abadi [GA08] has shown
that second-order quantification in CDD is not required for reasoning about the
speaks-for relation, in the first-order versions of the systems in figures 2.2–2.3.
We hope to obtain similar results for principal logic.

To test the devised logic, we are interested in a case study in which one
takes a realistic policy, encodes it in principal logic and prove various properties
about it. Such a study will hopefully highlight unanticipated issues with the
system.

Next, there are complexity and decidability issues that should be figured
if principal logic is to become practical, such as proof checking and search. If
the problem proves undecided or intractable, we should look for easily verifiable
properties on the formulae the guarantee practical complexity.

Once complexity issues have been addressed, it would be interesting to in-
corporate principal logic within an existing framework (e.g., Alpaca [LLFS+07],
Binder [DeT02], DKAL [GN09]). Such an endeavour would put the logic to the
test. However, we are not interested in pursuing this direction.

Every quantale has two kinds of arrows, the right adjoints to the functors
−⊗ b and b⊗−. However, the principal algebras only make use of one of them.

36



2.5 CHAPTER 2. PRINCIPAL LOGIC FOR ACCESS CONTROL

We are interested in investigating whether the other kind of arrow is superfluous.
If the other kind is not required, then we should obtain a smaller model class,
and a better classification of the models. If both kinds are required, we should
try to find out what information is conveyed by the other arrow.

A more theoretical research direction is to map the logical picture fully.
This mapping means completing the investigation of the relationship of Kripke
semantics to principal algebras and devising categorical semantics. Also, there
should be a form of Stone duality here. Therefore, one should look for the
Stone-dual of principal algebras and establish the duality.
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Chapter 3

A Presheaf Model for DCC

3.1 Introduction

In [ABHR99], Abadi et. al. introduce the Dependency Core Calculus (DCC).
The denotational semantics given there are ad-hoc to DCC, and uses indexed
relations. Here we present supplementary denotational semantics for a subset
of DCC, using presheaves. The presheaves pack away the indices, and seem
less ad-hoc. However, it is not immediatly evident how these should generalise
to incorporate recursion. In addition, the closed structure in our denotation
does not coincide with the usual presheaf exponentiation, retaining some of the
ad-hocness described earlier. We will not pursue this direction further.

The rest of this chapter is organised as follows. In section 3.2 we present
the syntax and types of DCC. Next, in section 3.3 we present Abadi’s relational
semantics for DCC. Section 3.4 contains our presheaf model for DCC, some of
its properties, its relation to the relational model and its disadvantages. We
conclude and describe further work in section 3.5.

3.2 Dependency Core Calculus

In this chapter we will study a subset of DCC which excludes recursion. The
goal is only to introduce the subset of DCC that we will deal with. For a full
treatment of DCC, see [ABHR99].

Let L = (|L|,v) be a lattice of protection levels. These levels correspond to
different views of the data.

For example, the protection level could describe publicity of the data. Thus
the low protection levels reflect a wider availability of the data (e.g., in a web-
site), while higher protection levels reflect more confidential data.

Computations between data introduce dependencies, which we wish to track.
In the previous example, a public computation that checks whether a given num-
ber is stored on the server reveals information that should remain confidential.
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DCC aims to negate this possibility, by ensuring that dependencies will not
break the protection hierarchy.

DCC types are given by:

s ::= int | bool | unit | s× s | s⇒ s | Tls

The monad Tls describes the type s, protected up to level l. Loosely speaking,
Tls makes sure any level not greater than l will not be able to observe differences
between values of this type.

DCC has standard terms, given by:

e ::= x | () | (e, e) | πi e | λx : s.e | e e | ηl e | bindx = e in e

In order to define typing rules for DCC, we inductively define the notion of
“type protected at level l”:

• Tl′s is protected at level l for all l v l′.

• If s1, s2 are protected at level l, then s1 × s2 is protected at level l.

• If s is protected at level l then Tl′s and s′ ⇒ s are protected at level l, for
all levels l′ ∈ L and types s′.

Using this notion, we type DCC:

Γ, x : s,Γ′ ` x : s Γ ` () : unit

Γ, x : s1 ` e : s2
Γ ` (λx : s1.e) : (s1 ⇒ s2)

Γ ` e : (s1 ⇒ s2) Γ ` e′ : s1
Γ ` (e e′) : s2

Γ ` e1 : s1 Γ ` e2 : s2

Γ ` (e1, e2) : s1 × s2

Γ ` e : (s1 × s2)

Γ ` (πi e) : si

Γ ` e : s
Γ ` (ηl e) : Tls

Γ ` e : Tls Γ, x : s ` e′ : s′
s′ protected at level l

Γ ` (bindx = e in e′) : s′

Note the unusual rule for bind.

3.3 Abadi’s Relational Model

3.3.1 Semantics

To model DCC without recursion, we use sets. Let R be the following category.
Its objects are pairs A = (|A|, 〈RA

l

〉
) whose first component is a set and second

component is a family of relations indexed by L. Its morphisms f : A→ B are
functions f : |A| → |B| respecting all the relations: if aRA

l â, then f(a)RB
l f(â),

for all a, â in A and l in L.
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The terminal object is the singleton with diagonal relations, 1 B ({?},∆).
Products are the cartesian products, with relations defined component-wise,
A1×A2 B (|A1| × |A2|,

〈{
((a1, a2), (â1, â2))

∣∣∣(ai, âi) ∈ RAi

l

}〉
). Exponentiation

is the usual collection of morphisms:

(A⇒ B) B (R(A,B),
〈{

(f, g)
∣∣∀aRA

l â : f(a)RB
l g(â)

}〉
)

We define the protection monad for level l, Tl by:

|TlA| B |A|

RTlA
l′ B

{
RA

l′ l v l′

|A| × |A| otherwise

All these constructions extend to morphisms as well.
Finally, we specify two objects: the unprotected booleans, whose carrier set

is {tt, ff}, and the unprotected integers, whose carrier set is Z, both of which
have the diagonal relations for all protection levels.

3.3.2 Properties

The relational model has the following properties:

Theorem 21. For any type s, let (A, 〈Rl〉) be its denotation in R.

1. Equivalence: Rl is an equivalence relation.

2. Contravariance: If l w l′ then Rl ⊆ Rl′ .

3. Top identity: If the lattice has a top element >, then R> is the diagonal
relation.

Note that these properties are key to modeling DCC. Indeed, our intuition
for the relations Rl is as equivalence relations, describing how the carrier set is
viewed from some protection level. The contravariance condition corresponds to
the decrease in the amount of information available in lesser protection levels.
The top identity property corresponds to the fact that nothing is hidden from
the most protected level.

Consequently, a more accurate relational model for DCC is the full sub-
category of R consisting of all objects satisfying these properties. That is, all
pairs of the form A = (|A|, 〈Rl〉), where the relations are equivalence relations
satisfying the contravariance and top identity conditions. We will keep our old
notation R for this subcategory.

3.4 Presheaf Model

3.4.1 Semantics

We use presheaves to model DCC. This model is based on the observation
that each protection level has its own view of the type, but these views are

40



3.4 CHAPTER 3. A PRESHEAF MODEL FOR DCC

suitably composed to respect the ordering on L. Concretely, we consider the
full subcategory P of SetL

op
, induced by all the presheaves whose arrows have

sections. That is, presheaves P such that for each l w l′ there exist an arrow
f : P (l′) → P (l) satisfying fP (l w l′) = id.

The last condition, which seems arbitrary, requires some explanation. Orig-
inally, since each level represents a different view of the data, the transitions
between levels should be surjective. However, when setting out to prove the
equivalence, the actual property used is the one above. In Set, these proper-
ties are equivalent, but this might not be the case when we generalise to other
categories. However, even this property is insufficient, see section 3.4.4.

Denotations for unit and product are the presheaf terminal and presheaf
product, accordingly. Exponentiation will be dealt with below. The protection
monads are given by:

Tl B x 7→ Set(L(l,−), x(−))

Thus, given a presheaf P , TlP = Set(L(l,−), P (−)) is the following functor. If
l v l′, then:

(TlP )(l′) = Set(L(l, l′), P (l′)) = Set({?} , P (l′)) ∼= P (l′)

Otherwise,

(TlP )(l′) = Set(L(l, l′), P (l′)) = Set(∅, P (l′)) = {?}

The Tl construction can be realised in the following way. Let C be a category.
Consider the bifunctor [−,−] :

(
SetC

op
)op

×SetC → SetC , given by [F,G] : x 7→
Set(Fx,Gx). By fixing the first component, we obtain an endofunctor SetC →
SetC , which can be shown to be a monad. By choosing C B Lop and fixing
the first component to be y(l), the image of l under the Yoneda embedding
x 7→ C(−, x), we obtain Tl.

Let us now turn to exponentiation. Unfortunately, P is not closed under the
usual presheaf exponentiation. However, it does have a closed structure. We
have found two ways to describe this structure.

The first way is through coreflection. Given any presheaf P , one can assign
a presheaf KP by:

(KP )(A) B{
a ∈ P (A)

∣∣∣∀f : A→ B∀g : Â→ B∃â ∈ P (Â) : P (f)(a) = P (g)(â)
}

(KP )(A
f−→ B) B a 7→ P (f)(a)

(K(P α−→ Q))A B a 7→ αAa

It can be shown that this is a right adjoint to the inclusion functor. Therefore, P
is a coreflective subcategory of SetL

op
. Thus, the Cartesian closed structure of
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SetL
op

is inherited in P by coreflecting the normal constructions. The coreflec-
tion of the terminal object and the product are identical, while the coreflection
of the exponent is not always identical.

The second construction is fairly straightforward. Given two presheaves P ,
Q in P, the exponent QP is given by:

QP (l) B {al|a : P → Q}

QP (l w l′) B al 7→ al′

It can be shown that if all maps in P and Q have sections, then QP is a
well-defined presheaf in P which forms an exponent with the obvious evaluation
map.

3.4.2 An Example of Non-Interference

One of the reasons for using DCC is to formulate and prove non-interference
properties [ABHR99].

Let L B {low, high} with the obvious relation low v high. Consider the
high security booleans, boolH(low) B {?}, boolH(high) B {tt, ff} and the low
security booleans, boolL(low) B boolL(high) B {tt, ff}.

Any natural transformation f : boolH → boolL must, by naturality, agree
with the low security component flow : {?} → {tt, ff}. Consequently, all com-
ponents of f must be constant.

3.4.3 Relation to the Relational Model

Under the additional assumption that the lattice L has a top element, it is
possible to construct a fully faithful functor F : R → P, which factors through
units, products, exponents and the protection monads, by the mappings F (A) B
l 7→ A/Rl and F (A)(l w l′) B A/Rl → A/Rl′ .

3.4.4 Disadvantages

The most obvious disadvantage of the presheaf model is that it is not obviously
generalized to include recursion. Indeed, in many of the proofs we required that
the presheaf mappings will have sections. It is not obvious what restriction
should be placed on the relations Rl such that the quotients maps A → A/Rl

will have continuous, monotone sections.
Another disadvantage is the unusual exponentiation. Had P’s closed struc-

ture coincided with the usual presheaf exponent, a stronger case for using
presheaves for semantics would have been established. The absence of this
property limits the interest in the particular presheaf model.
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3.5 Conclusions and Further Work

We considered a restricted form of Abadi’s relational model, which has ad-hoc
constructions and uses indices heavily. Also, the relational model leaves implicit
the equivalence, contravariance and top identity properties.

We have managed to pack the indices into presheaves, and presented an
equivalent model, when the protection lattice has a top element. We have also
limited the ad-hoc constructions to the protection monads and exponentiation
only.

The presheaf model, although equivalent to the restricted relational model,
is not immediatly generalised to incorporate recursion.

Apart from trying to generalise the presheaf model to include recursion (per-
haps using [Lev]), it would also be interesting to see whether the bifunctor [−,−],
introduced for constructing the protection monad Tl, crops up elsewhere.

Additional merits to the presheaf model should be considered. For example,
whether Abadi’s non-interference proofs become easier using the presheaf model,
or whether research leaning upon the relational model encountered problems
that can be avoided using the presheaf model.

In a different direction, one might be able to pack the indices, but keep the
relations, by using presheaf equivalence relations. These are subobjects of the
product F × F , which are componentwise symmetric, reflexive and transitive.

Finally, even though our attempt to generically construct presheaf models
with the usual presheaf operaions failed here, the attempt should not necessar-
ily be abandoned. Perhaps the coreflective construction presented here is the
correct approach to these presheaf semantics. Therefore, it is interesting to try
to find other presheaf models that are Cartesian closed by being coreflective
subcategories.

We do not plan to pursue this research avenue in the near future.
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