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In the reeent past people have looked at non-standard models of
algebraic theories. Today T wish to look at nodels of algebraic theories
in non-standard categories. I am by no means the firgt to do so.

I began with a simple question: What is an algebra in the standard
category, that is, the category of sets ¢ My answer must be formulated
in eategory predicates — objeets and maps, bubt no elements. When o3
formulated it can be applied to an arbitrary category.

Let us start with a special case and formulate the axioms for a gloup.
A group is a set A together with three maps: m: AX A = A, n: 4 -4,
¢: .4 > 4 such that

1} associativity:

AxAx A A><A—+A A AXA S A A 4,
2} identity constant:

i

AXA > Ax A+ 4 =4 >A
'3) inverses
AXA 5 A)(A >A A—%A

(L denotes the identity map).
We are not finished. The map e is supposed to be a constant map.

Phat is, T%e must adjoin the equation e(x) = e(y). Tt we understand
pi(tvl) mﬂ) o m@,, thell ;

HDAxAZ a5 a4 —4xaZala

Now if we know what 4Ax 4 and the two maps p,, p, mean in an
arbitrary cabtegory we should know what we mean by a group in an

* Presented to the Conference on General Algebra, held in Warsaw, Septem-
ber 7-11, 1964, -
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arbitrary category. The categorical definition of product can be foung
in many places starting with Eilenberg-MacLane [1]. It can also be foung
in A4belian Oategories, a book I feel obliged to ‘mention for a number of
reasons, among which ig the fact that publisher gave me an advanee oF

For a number of well-known categories the groups therein hgyvye

well-known names:

CATEGORY | GROUPS THEREIN
Topological Spaces Topological Groups
Algebraic Manifolds | Algebraic Groups
Ditferentiad Manifolds Lie Groups

Topologieal Spaces and Homo- H-8paceg
topy Classes of Maps
A

One of the chief virtues of g group,\"iu & catiegory «7 iy that for an
arbitrary object Be.s the set of maps from B to A4, which I denote by
(B, 4), is g group in the category of sets. To Wit

a (B,m)
(B, )X (B, A)~ (B, 4x 4) % (B, 4)

©is its multiplication, where d is the one-to-one correspondence that

arises from the definition of Product, and (B, m) is the funetion obtaineq
by composing with 4, It B is held fixed, (B, —) ig g broduct preserving
fanctor and perfores breserves all the axiomatic equations. If we hold 4
fixed, (-—, 4) becomes g, contravariant funetor with vales in the category
of groups and homomorphisms. T4 i an example of what we ghal call
& ropresentable algebra valueg Junetor, '

I think that the first deep theorem about functors wag the Hilen-
berg-MacT.ane discovery 12] of the K (7, ) Spaces. They showed that
the n-th cohomology functop with coefficients in & group g iy naturally
equivalent to the functoy (-, K(x, n)) where K (7, %) is & group in the
cabtegory of Sspaces and homotopy clagses of maps,

Now let ug goneralize. Let T be an equational algebraie theory.
There are a numbpey of ways of formalizing that notion, T pick the most
primitive: 7 ig an indexed Tamily of operator symbols {f:} together with
a family of hon-negative integers {v:} indexed over the same set, together
with a family of equations relating the fi’s each of which looks in the
equation as if it wepe g function on vy argumenty. N

Given a theory 7' angd g category 7 we ghall say that a T-algebra
in & iy an object 4 eur together with g T-structure, that s for each f,eT
there is assigned g map F Iy A — A and the collection is such that

() For related problems ses {he dedication in that boolk, [47, p, minng 3. (Note
of the Editors.)
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the equations of 7', when interpreted ag below, are true. To interpret
an equation it suffices to interpret an n-ary expression in the f’s as a
map in . The inberpretation of the expressions follows from the recur-
sive rules:

0) The interpretation of f; is 7. , _

1) I{ ¢ is an n-ary expression, and g{@1, @ay ..oy @) =y, then we
interpret ¢ as p,: IT, 4 —> A, the j-th projection. :

2) It g(ay, .00y m,) :fi(hl(a?l? vy fb‘n)i Ry ]I"L'?;(J_"L’jl? 1y ’bvﬂ)) and il we

have already interpreted the #’s as maps hy s I, A — 4, then we interpret
¢ a8 the composition ‘

Hh?' fi
LA I, A~ 4.

I shall apologize for this primitive notion oft heory and the attendant
cumbersome netion of T-structure. I am in a quandry. The elegant

~ definition is that used by Lawvere in hig disserfation [6], in which

theories are categories of a particular kind, and the algebras in &7 are

‘particular kinds of functors from the theory info 7 (and the homo-

morphisms between the algebras are just natural transformations between
the functors). I reject his formulation for expository reasons peculiar
to our times — the language of categories iz still too new. (Lawvere’s
definitions and some of his remarkable theorems are deseribed in his

announcement [77.) '

Contravariant representable fumetors. If A- 57 hag a 7T- structure, fhen
for every Bes?, (B, 4d) is a T-algebra (in the category of sets) and the

~ funetor (—,4) may be interpreted as a T-algebra valued functor. In

particular, a map B — B¢’ induces a homomorphism (B’, 4) — (B, A).

Let & Dbe the category of sets and &7 the category of W-algobras
and homomorphisms in & (in other words, the ordinary notion of the
category of T-algebras). We shall say that (—, 4): &7 - %7 is a contra-
variant representable funetor, represented by the T-algebra A e/, OF
more compactly, by 4 eo/T, where o7 is the category of T-algebras and
homomorphisms in 7,

In the language of [4], 16t . be a complete category and F: .o > Fr
@ contravariant functor. # is representable if and only if it has an adjoint
on the right. I shall indicate the proof in a Ilatter section. But for the
moment, allow me to translate the above assertion together with the
content of the Special Adjoint Funector Theorem of [4]: :

Tororem 1. Lei T, and T, be equational algebraic theories and I
S > I 4 contravariant functor. F is vepresentable if and only if

1} For every set {B;} in 9™ there is o notural wsomorphism F( DBy
= [[#(By) (where 3 means free sum and [] means product). '
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2) Let f: A — A’ 5™ be an ondo homomorphism, K = {<a,, a;) [f(a)
= flag)}, end p;: K — A be defined by Pty @) = a;.

Then F(f): F(A') - F(A) ds one-to-one and ihe wmage of F(f) is
{weF(A)| F(py)w = F(py)w}. :

In fact, there are not too many familiar examples of contravariant
representable functors. It will be the covariant case that is of most
interest. But as an example of the power of such o theorem It me indicate
how it can be used to construct injective modules, a task first performed
by Rheinhold Baer using nothing but his own ingenuity and the ordinal
numbers, '

Injective algelwas and cogenerators. Given g theory 1" and an algebra
A eF*, A is injective if for overy Bes" and subalgebra B’ < B and
homomorphism f:.B' >4 there iz an extension f:B-» A such that
71B” = f. In the case that T ig the theory of left modules over a ring -,
phis definition specializes to the usual.

A I8 a cogenerator it for every BeST and pair of distinet w, yeB
there exists a homomorphism f: B — 4 such that Slew) + f(y), unless B
has a single element in which case we require (B, 4) £ @. Note that if
A is a cogenerator, then we obtain a one-to-one map B> Il 4 for
sufficiently large I (in particular for I = (B, 4)). If T contains an
mjective cogenerator, then overy T-algebra may be embedded in an
injective algebra because products of injectives are easily seen to be
injective.

. The subject becomes a subject about functors once we make the
tollowing two observations: ' ‘

A is injective if and only if (—, A) carries one-to-one maps inio onio
maps. _ '
A is @ cogenerator if and only if (—; A) is & one-lo-one functor.

Now let 7'y be the theory of left B modules, 7', the theory of abelian
groups. For § the group of rationals, Z < @ the group of integers, it is
the case that Q/Z is a divisable group and hence by Zorn’s lemma, an
injective object in 52, Moreover @/Z is.a cogenerator in &%z Consider
the functor &1 9" which forgets the module structure and
remembers only the underlying group structure. Such a functor is called
forgetful. It'is a covariant functor that pregerves the hypotheses of two
conditions in- Theorem 1. Consider the functor (—, Q/Z): &% — 971,
Being representable, it carries the hypotheses of the two conditions
into their conclusions. Hence the composition STt — FT2 gatisfies the
two conditions and is representable, say by 4 %1, But the two fanetors
we are composing are both one-to-one and hence 4 ig a cogenerator.
The forgetful functor carries one-fo-one ‘maps into one-to-one maps

- and (—, @/Z) carries them jnfo onto maps, hence 4 is injective.
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Constant maps and zere-ary operations. .I have so far tried to
_ignore one problem: what is a 0%ary operation on AesZ. We can
of course define O’ary operations by using unary operations and
by adjoining the revelant equation, namely that whieh will become

interpreted as
: Py / Pg !
1) AXA—- 4> A4 —=dxd-+ A4 4,
That equation is equivalent to
2) For all ¢, : B> A, g,: B> Aess

Sfatement 2) seems best to generalize the notion of constant function
to the notion of consbant operator in a category.

We are faced, however, with the anomaly that this solution to the
- problem of 0’ary operations makes the empty set a model (in sets) of
every algebraic theory. To find the alternate solution we apply what
by now hag become a standard method. Whatever a generalized 0’ary
operation on 4 is, it should induce an ordinary 0’ary operation on (B, 4).
Hence by fiat we declare that a 0’ary operation on A4 is a collection
{fae<(B, A)}p.~ such that for every B ->B'ecs/, the induced map
(B', A) — (B, A) carries fp. into fp (and hence will be a homomorphism). A
Stated another way the diagram

Py
K

};),4’

commutes regardless of the choice of B — B'.
Now f, will be a constant map as just defined and furthermore

B E A=8B-4 fi A for arbifrary choice of B — A. But there is an
extensional difference between our two definitions: whereas a generalized
Q’ary operation determines a constant map which in turn determinés
the 0’ary operation the converse ig false.
If (B, A) # @ for all Best, then there is a one-to-one correspondence
between the constant maps on 4 and the OVary operations on A. :
If (B, A) =@ some Bess, then there awre no O'ary operaiions on A.

Tengor producis of algebraic thesries. Lot T, and T, be theories, & the
category of sets and congider (&T1)T: which may he described as the
category of T'y-algebras in the category of T-algebras. Such an algebra
is a sebt 4 with a @')-structure and a F,-structure and such that each
T, operation is a T-homiomorphism. That is, given f,e Ty, ¢ne®y and
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a set of points in A {y}jziver we obtain the equation

(b) fn(gm (@1 - wl‘vm)? crey P (%ﬂn crey mvﬂﬁ)m))
= gm( n(Bry oo mvnl)g veey fn(mwm; veey mﬂnﬁm)) -

The set of such equations iy symmetric in S and g, All the T';-oper-
ators are T'-homomorphisms: (F%1)*2 is equivalent to (&T2)T1. ‘

We can do better. There is & theory 7' such that %7 is equivalent
to (*)%2, We ghall call such theory the fensor product of the two
theovies and denote it by T,®7,. |

The operators of 7",@7, are obtained by taking the unicn, in the
digjoint sense, of the operations from 7', and ¥,. The equations of 7,QT,
are obtained by adjoining to the equations from 7, and 7, all the equations
of the form (b), one for each pair of eperators from 7'y and 7,. Thig
construction is wniversal: for every category o7, #%1@%: ig equivalent
bo (e ™)%2, _ L .

The tensor operation on theories is commutbative and associative.

With mild restriction on 7', and I, it turng out thatb T.QT, collapses
to a rather simple type of theory,

Prorosrrion. If both T, and T, have constants, then T,QT. has «

unique constant.

Proof. If fis a T'-constant, g a T'p-constant, then the tensor equation
yields fg = gf and hence f = ¢.

Proposicion. If both Ty and T, have binary op.e-?:c-zim"s_ each with o
two-stded neutral constant (just as tn the Jdnsson-Tarski theorem [5]),
then T'®T, is the theory of modules over « half-ring (a ving without
subtraction).

Proof. Let -+ be flie hypothesized operation coming from 7.
,1" .
The two constants are one, so if we call it 0, then o1 0 — & — 0+w.

The tensor equation gives i ¢

(o) (5-+2) - (w0+9)+ (042,

I we let @ =y = 0, then w42 = w2,
-1

2
Brasing the subscripts: (w--o)4 (¥+2) = (w+y)+ (w1 2), which
eguation implies the associativity and commutativity of -+ (let # = 0,
then let w — 2z = 0), . '
Every operation is a sum of unary operations, because every opera-
tion must be a -+ homomorphism and hence

@, ooy @) = f{w, 0, ..., 0)+7(0, @, 0,...,0)+ ... +H0, ..., 0, ).
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The set of unary expressions together with -+ generate the theory.
Let U be the set of unary expressions. If is closed under 4 and composition

‘and becomes 2 half-ring with 0 and 1.

A TRT,-algebra 13 & commutative semi-group with 0, on which U
operates, q. e. d.

And if Ty and T, started out being the theories of modules over
rings R, and Ry, respectively, then 7,®7, is the theory of modules
over R;®R, and R,®R, may be. identified as the ring of unary expres-
gions in TQ@T,.

The next propositions may be interpreted as saying that the
theories of modules over half-rings form an ideal in the class of theories.

PROPOSITION. If Ty is the theory of modules over @ half-ring B, then
Jor any L'y, there is « holf-ring B' such that T;QT, s the theory of modules
over R’.

Proof. Let + be the additive operator from 7.

Every expression in T'QT, is a homomoerphism with 1espe(}t to -}—,
and ag in the proof of the last proposition, every expression is a sum of
unary expressions: Hence the set of unary expressions is a half- -ring and
its modules are the models of T',PT,, ¢. e. d.

Bome other examples of tengor products of theories:

If T, iy the theory of modules over B and 7T, is the theory with a
single unary operator X and no equations, then 7,®T, is the theory of
modules over the polynomial ring R[X].

If T, is as above and 7, is tho “discrete” theory with unary oper-
ators Xy, ..., X, and no equations, then T',®T, is the theory of modules
over B[X;,..., X,] where it i3 understood that the I’s do not commute.

If T, is as above and T, is the commutative discrete theory, thab
which hag unary operators X,, ..., X, and the eq11at1ons {X Xy = X X3,
then T ®%, iy the theory of modules over kX, ..., X,;], Whele now
the X’s do commute, ‘ ‘

The last Ty, the commutative discrete theory, is the n-fold tensor
product of the simplest non-empty diserete theory.

In general, if 7 is as above and 7', is any theory all of whose oper-
ators are unary, then 7,®T, is the theory of modules over the R-algebra
generated by the operators of T, reduced by the equations of 7',. This
conditign on T, is equivalent to saying that there is a semi-group ¥,

and that ¥ ,-algebras are sets on which 7, operates. T,®@7T, is the semi-

group algebra B[¥ ,].

If 7y is the theory of sets with a semi-group ¥, acting on them,
then 7',®@T; corresponds to 7°,X¥7,. The associativily and commuta-
tivity of tensor products thus yields that R[7,]QR[¥,] =~ ROR'
[ X7 5], '
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Co-algebras. Let 7 be an algebraic theory. A T-co-algebra in o may
be detined as a T-algebra in /%, the dual category. Tt is useful however,
to translate back to «7: a T—eo—algebra, in & is an object Aess togethez
with a T-co-structure, that is a ecollection of maps {f;: 4 - %, A} such
that for every equation ¢{w;,...,®,) = him,..., o) in T When 00~
interpreted in </ holds. The co-interpretution of an n-ary expression
glwy, ...y @y,) is given by the recursive rules. :

0) The co-interpretation of fieT is fi: 4 — 2y, A

I gle, ..., o) =0, then g="1u:4 > 2,4, where 1% is. the
canonical injection appearing in the definition of Z.

2) g, ..., m,) = fz(hl(’vu vy W)y Ba(@y Dy @)y 3 B (@15 0005 6 %a))
and if we have already interpreted the ks as maps %y : A — 2 A, then
we interpret ¢ as the composition

7 Ry
A2 4 - 24,

Let us specialize to a very special case. Let 7 be the theory for
groups and J the category of spaces with base points and homotopy
clagges of maps. 2 is an abstract category. It is, if you will, a guotient
of the concrete category of spaces and continucus maps, obbained via
the homotopy congruence relation. The sum of two spaces 4 and B.
in & is constructed as the “wedge sum” Av B, by taking the disjoint

“union of 4 .and B and then identifying their base points. If 4 is a Z-co-

algebra, or as usually said in this context, a co-group, then its “co-muli-
plication” is a map 4 > Av 4, The best known co-groups are the spheres.
If 8* is the n-sphere, note that if the equator §*~' = 8" is collapsed bo
a point, the result iy homeomorphic to S"v&". This collapsing is the
co-multiplication 8" — §"v8". The constant map is the map which
sends everything to the base point. The associativity equation does not
hold in the category of continuous maps bub it does hold in 7.

It A is T-co-algebra in o, then for any Bes/, (4d,B) acquires
a T-structure — nob a - co-structure. Hence the co-multiplication on
spheres makes (8", B) into a group. And, of eourse, it is the usual multi-
plication on the usual homotopy groups.

The canonical co-structure om free algebras., Lot T be an algebraic
theory and let ¥ be the free algebra generated by me® in . F has a
canonical T'-co-structure in &%, (Note that  need not have a T-structure
in &%) First observe that X, F is the free algebra on % generators
{%1, ..y @y}, The canonical co-interpretation of fi<T iz defined to be
the map j;: F - X, I which sends @ info the expression fi(w, ..., %)
ey 1. 1T g is any n ary expression in 7', then the co- mtelpletatmn of
g frrns oub o be bhe map g: ¥ = 2, F Whleh sends @ into g(zy, ..., @)
e, I" and the equations of ¥ hold for the canonical 00—interpretatiens‘.
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The 7'-co-structure on # makes the set of maps (¥, B) into an algebra.
Of course the set-valued functor (#, —) is naturally equivalent to the
forgetful functor ¥ — & (it forgets the strucbure). When we view
(£, —) a8 an algebra valued functor, it is naturally equivalent to the iden-
tity functor S* — F*, The canonical co-structure we have deseribed on F
is characterized by this last fact: it is the only co-structure (up to isomors
phism}) which makes (¥, —) naturally equivalent to the identity funetor.

Let 7': o —> % be a contravariant functor which carvies finite sums
into products. 7' will then carry any T'-co-algebra in 7 into a T-algebra
in #. If o is an algebraic category, then T'(F), for F the free algebra
in &7, carries a natural T-structure in #. In other words, T(F)eZ*,

Beferring back to theorem 1, if 7' is a functor satisfying the two condi- _

tions of that theorem, then perforce it carries finite sums into finite
products and T(F)«sN1QTs, ' ‘

Now if 7' is vepresentable, then T'(#) is isomorphic to (¥, 4) as a
T'y-algebra, and (¥, 4) is isomorphie to 4. Hence if we wish o find the
representor of 7' we need only evaluate 7 on the free algebra F s
and obtain the T ®@Ty-algebra T(F)es"1&T2, In the construction of
injective modules we start with the free algebra in the category of right
£ modules, namely, B itself. R is simultaneously a left-® module (there’s
- the co-structure). We consider the set of maps (R, Q/Z), where R is
momentarily considered to be just an abelian group. But the left
R-module strucbure on K makes (R, Q/Z%) into a right R-module. Such
is an injective cogémerator. (This fact was first observed by Eckimann

and Schopf [3]).

Theories for autonomous categories. If T is the theory of groups, then
the only co-groups in 7 are the free groups. If T is the theory of
abeliam groups, then for every A<«9% therve is a unique T-co-structure
on A, namely that for which the co-multiplication 7 : 4 - A@ A is such
that m(x) = (w, o) (A4 A ~AX A4 in 7). For A,BesT, (4,B)
acquires a group structure by either the group structure on B or the

co-group strueture on A; they are the same. Nobe that B has a unigue

T-structure in &%, That iy (F7)T = S2, TQT =T,

In general, if 7' is & theory such that there exists g functor Hom (4, B)
with values in % for A, Bes" such that the underlying set of
Hom(4, B) is the set of maps from 4 to B, then each BT has a cano-
nical T-structure in & (we have an embedding &7 .» FTOT), and

each 49" has a ecanonicsl T-co-structure in 7. We can conclude

that 7' must be such that each T-operator is a T-homomorphism. As
in my examination of I,®T,, we can prove that such g T has at most
one constant, and that if it has a binary operation with zero, then T
is the theory of modules over a. commulative half-ring.

Colloguiunm Mathematicum X1V 7
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Linton, in his Columbia dissertation [8] calls a eategory aulonomous
it it has a forgeiful functor F': o7 — & and a functor Hom : #/*Xof > & ©
such that # (Hom(A_, B)) =~ (4, B). Hence we have just identified those
theories 7" such that &7 is aulonomous.

Let o/ be an arbitrary category with finite products. What is the
largest algebraic theory T such that we can factor Hom: X — &

bhrough the forgetful functor &% -» %7 T may be constructed as the

@nlgeblalc theory of the 1dent1i3y functor (o7, o).

T is necessarily such that &% is autonomous. If .7 is the ca;tegor
of left K-modules, T will be the theory of modules over the center of R.
In general, if o7 = &%, then 7' is the subtheory of T’ generated by those

~expressions in 7" which are 7' homomorphism.

Co-constant maps and 0’ary co-operations. If f is a unary operation
in 7, then the co-interpretation of the equation f(x) = f(y) is

7 1ty 7 Uy
AAAAA—]—A::A—% A-—>A—[—A

which is equivalent to A > A3 B A > A—> B for all g, he(4d, B),

all B,

We shall call such a map a co-constant operation.

If f is a Q’ary operation in 7', then its co-inferpretation is a choice
(e(4y Blpw such that AZ BB =A% B for all B Bew.

If (4, B) # @ all Best, then the co-constant operations on A and the
Vary operations on A are in one-fo-one correspondence.

If (4; By =@ some Best, then there are no Gary eperations on A.

Now for the free-algebra F e, (H', B) is empty ouly if B is empty,
henee only if 7" has no O'ary operations. Otherwise, if & does have
(’ary operations, then the 0’ary co-operations on F correspond to
the coconstant operations and they in turn correspond to the 0’ary
operations in 7.

In general, all co-constant opelfz,mons on Aes/ must be maps all
of whose values are algebraic consbants. And conversely, any A — 4
the image of which is in the atomic subalgebra of 4 is a co-constant
operation.

Covariant vepresentable functors. We shall say that a covariant funetor
I ot~ S is representable if there exists a T-co-algebra Aes/ such
that 7' is naturally equivalent to the functor (4, —). If T is the empby.
theory, this definition coineides with the standard: % = & and (4, —)
15 the usual set valued functor.

I shall momentarily use the language of [4] to state and sketch the
proof of a theorem which will be later translated back into the language

of general algebra.
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THEOREM 2. Let o be o compleie category, T am equational algebraic
theory, and T : o — FT 4 covariant Junolor. T 4s vepresentable if and only
if T has & left-adjoint.

Proof. T shall not here construct the left-adjoint of a representable
functor. The latter sections on tensor products of algebras strongly
suggest the construction for general #, and indeed, contains the
construction. for the case that & is an algebraic category. '

Suppose that 7':. 97 Joes have a lefo-adjoint §: 9T s .
Let # be the free algebra on one generator in &%, The adjointness of T
and § says that the set-valued funehors (¥, 7(--)) and (S(F), —) are
naturally equivalent, The canonical #'-co-structure on # induces a T-co-
structure on §(F) (left adjoints always preserve sums), and if we view
(77, 0(—)) and (S(#), ~—) as T-algebra valued funetors, the natural
equivalence ig still an equivalence (it is a homomorphism of algebras
because of its naturality on the first variable). Of course, as we have
already remarked (F, —) ig naturally equivalent to the identity funetor,
hence 7'(-) is naturally -equivalent to (8(F), —), q. e. d. : '

CorROTLARY. Let 7 be a complete calegory, T' am equational algebraie

theory, and T : of — eﬂl" o contravariant funcior. T has an adjoint on the

right if and only if T is representable.

Proof. Just veplace & with 7%,

For the proof of Theorem 1 use the Speeial Adjoint Functor
Theorem of [4] together with the obgervations that firgt, an algebraic
category always has a generator (the free algebra) and second, the two
conditions of theorem 1 are equivalent to the statement that 7' carries
right-roots into left-roots, g. e. d. ,

It will be a little more difficult to translate the covariant case into
general algebra. The special adjoint functor theorem can not be used’
because an algebraic cafiegory meed not have a co-generator (e. g. the
category of groups, abelian or not). We shall need the general adjoint
functor theorem. :

The continuity conditions are easy to translate and will be stated
in the theorem below. The solution set “gondition needs analysis. It
turns out that it is easier to translate the conditions if we stipulate the
size of the representor. Lot A <71 he g finitely generated T,-algebra
with a T',-co-structure. Let {B:} bo a diredted family of subalgebras of
B ™1, that is, every finite subfamily in {B;} is bounded in {B;}. Note
that if we consider (A4, B,) as a subset of (4, B), then ‘

U(A? Bi) = (A: UBz)

This property of (4, --), namely that it preserves directed umnions
is, in fach, equivalent with the property that 4 be finitely generated.
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THBOREM 3. A fundior I': P FT2 ds representable by a finitely

generated T-algebra (with a Ty-co-structure) if and only ¢f
- 1) T preserves products,

2) T preserves difference kernels: if fi, foe(B, c I gnd K =
{weB|f1(2) = fo(w)}, then T(H — B) is & one-to-one map and its @fmage
is {weZ'(B)|(TfHi)(2) = (Tf:) (@)}

3) T preserves direcled wnions: f {B;} is '« dirvected family of S'Mb
algebras of B, then \JT(B;) = T B;).

Proof, In the language of [4] we wish to show that if Bes71 ig
generated through T by Fe¥™2, then B is finitely generated. Officially
we wish to show more according to 3,1 in {4], but this is a typieal case.

Consider the generating map # — T(B). Let {Bz} be the directod
family of fmltely generated suba1geb1as of B.

| J B; = B and hence the map # - T(B) must factor through some.

T(B;). By the definition of the phrase “generated by F through ' we

- conclude that for some 1y By = B and that B is finitely generated,
q. e. d. _

_ The general resuly for covariant representable functors between
algebraic eategories needs the following' definition, where I is any
infinite eardinal number.

An T-dirvected family of subalgebras is & family such that every sub-
family of cardinality I or less i§ bounded within the family.

TaeEOREM 4. A funclor T:5%1 - 5% s 7’ep1'esentable by o T'5-
algebra with L or less generators 4f 1) 1 preserves produets, 2) difference
kernels, and 3) L-divecled unions. ‘ _

' Lawvere fmeﬂms A Lawvere functor is o funetor T; 71 FT2 which

pleserves underlylng sebs.) The easiest are those that “forget” some of
the structure, e. g., the functor that sends a ring to its multiplicative
semi-group, or the functor that gends an R-module to its underlying
additive group. An example of a Lawvere functor which is not forgetful -
ig that which sends an associative algebra to a Lie-algebra by defining
[fU ¥l = wy—ya.

A Xawvere functor trivially preserves products, difference kernels
and directed unions and hence by Theorem 3 it is vepresentable.
Suppose A<FTL represents a Lawvere functor. Because there is
a natural equivalence between the sets B and (4, B) it must be the case
that A is the free algebra on one generator in $°%:. Hence the Lawvere
functors from 71 to 72 ave in one- -to-one, correspondence with the
T',-co-structures that may be placed on the T free algebra. And these

- in turn ave in one-to-one correspondence with the theory-maps Ty — T,

as described. below.

_»‘-.'.
ST,
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Congider ‘a T,co-structure on the free algebra F e, For each
fs<T'; there ig assigned f,: ¥ — %, F'. Bur f; is determined by f;(»), for
the generator of 7, and f;{«) is just an n-ary expression in T,. For each
operation in-T, we will obtain a ¥',-expression of the same valence, and -
for each eqguation in T, we will obtain a 7'-equation if we replace the .
operators with the corresponding expressions. Such is what we mean
by a theory-map T, — T. Conversely any theory-map yields a 7',-co-
structure on K e, -

A familiar example is the case when we are given & ring homo-
morphism £, — E;. Such may be interpreted as a map between the
&lgeblaio theories of their modules. The corresponding Lawvere functor
is the familiar change-of-rings funetor.

When 7', is a sub-theory of 7';, perhaps fewel operators, perhaps
fewer equations, then the Lawvere. functor F*1 - 72 ig the forgetful
functor. '

When 7, is the theory of Lie-algebras, T, the theory of associative
algebras, and 4', — Ty the theory map that is constant on 0, +, — and
sends [«,y] into ay—ye, then the Lawvere functor &1 > £ ig the
previously mentioned example.

Remark. Abandoning formal linguistic inhibitions we obtain a
confravariant functor from the category of algebraic theones and theory
maps to the cabtegory of categories. Lawvere in [8] “calls this the
Semantics Iunctor, e identifies therein its adjoint which he cally the
Algebraic Structure Funector., Semantics is adjoint to Structure,

Tensor products of algebias. Liet 7', T, be algebraic theories. We
shall denote the category of T';-co-algebras in 2 by the notation , &
Given Ae%&” s Beg, F*2 consider the composition

(

A B,
w1 ) gy (57 g

By theorem 4 the composition is representable by a 7' -co-algebra
in &% Let us call it B4 ep s

(t) ' (B® A, 0) ~ (B, (4, 0)).

A TLittle genera.l functor theory [4] makes ® info a two variable
innctor
ngowg ®T25p§1‘1 N TslyT]_

and the isamorphismé (t) are natural in all three variables. Tn particular
— @A 72 - "1 iy the adjoint - of (4, —): % - %2 which is
just a fancy way of saying that equation () holds and is natural in B
and (. '
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A few examples: First are the classical usages of tensor product.
The tensor product of rings is nof an example of my tensor product of
algebras, it is an example of the tensor product of theories. Tensor prod- -
ncts of modules, however, are examples: Let 7'y be the theory of right
 Ry-modules , T the theory of abelian groups. An object 4 cq, F*1 s just

a left R-module: Bes™ is a right R-module. BRA S is a group.
In this case we have taken Ty to be empty.

Let T, be the theory of right-R,-modules, 7'y the theory of
right Rg-modules. Then Aeq ™ is a group with a vight R, module
structure and a left &, module such that 7y(wry) = (ro2)ry for all
(Pyy 0, Tgpe BiX AX Ry, Similarly Beg f 2 i85 @ 11g11t B.-module, lett
Remodule and 7y(@ry) = (738)7;. B®AeT F*1 ig right R;-module and
a left Ry-module. :

The isomorphism (t) gives the tniversal mapping pr 01)81 ty of BRA.
A map B — (4, 0) is an R,-bilinear map.

Tet T, be the theory of rings with identity, 7', the theory of groups,
7 FE 5 #T2 the functor which sends a ring to its group of units.
T may easily be seen to verify the condition of theorem 3 and hence
is represenable, say be Aey 7. The isomorphism (b) identifies
BR A e, for Bes T2, as the gloup ring of B. In this faghion we can
identify 4 :%®A is the group ring of Z. But (Z®A4,0) ~ (4, (4, )

~ (A,C) for all ¢ and hence Z®4 = A. If we construct A as
Z[X, ¥Y]J(XY—1, YX-—1) or more conveniently as Z[X, X1 the Z
polynomials with posmve and negative coefficients, then we can construct
its T,-co-structure as that given by the co-multiplication

W ALK, XY = Z[X, X -Z[X, X7 ~Z[X,, Xy, Xy, X311

where m(X) = (X, X,). _
PropoSITION. Tensor products of algebras ave associaiive. That 18,
OR(B®A) is natwrally equivalent fo ((QB)RQA.

Proof. Immediately from the definition of B®A as that which
represents (B, (4, —)).

Characierization of functors given by temsoring., We now prove

THEOREM 5. A coveriant functor T :S"1 » T2 g5 naturally equi-
valent t0 — Q4 1 M1 P2 where Aeyn S if and only if

1) 7' preserves free sums,

2) 7' preserves difference co-kernels: If f: B — B is an onlo map
in SN, K = {{oy, @y e BX Blf(w:) = f(wa)} and pi(w:, @) = ¥y, then
T(B) - T(B") is onto and the congruence it defines on TB is gener-
ated by pairs {{yy, yo> e T(B)XT(B)| there is z<T(K), T(p){z) = Vi)
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Proof. That tensor products enjoy the two properties is a formal
consequence of the adjointness relation (t), as described in [4]. For the
other direction we may rely on the Special Adjoint Functor Theorem,
q. e. d.

If we describe a construction, we would note that 4 as a Tp-algebra
is 7'(¥#), where F' is the free algebra in &L 4 acquires a T,-co-structure
from the canonieal co-structure on ¥ and the fact that 7 preserves sums.

The general functor approach indicates that we should be able o
define a more general tensor product 7' ® pef where & is an arbitrary
right complete category and 5« is the eategory of T-co-algebras in 7.
And indeed we can. Or could if se inclined. .

Moreover we could define a “symbolic hom” functor (&%, ™)
contravariant on the first variable, covariant on the second. And the
isomorphism (t) would still hold.

Generators and relations for temsor products of algebras. The formal
properties of @ as deseribed in Theorem b tell us that there is a scheme
for generators and relations. If we represent Beg, PV a5 a free algebra
- 2 B modulo a congruence K, then the difference ee-kelnel preservation
will yield a congruence on X, F®A = X, 4 which defines BQA. As
for the Tj-co-structure on B, it transfers to B®A simply by the sum-
preservation property of —®A.

We shall, however, directly argue the proof of the following theorem:

THROREM 6. Lot BeS™, Acp ™. BQA is the Tyalgebra gen-
erated by (b albeB, acd} subject to the relations

Type I: for each ficTy,beB, ay, ..., Gy e d

b&fi(ty ..., toy) = Je(b Ry, ..., Z’®%¢)5

Type IL: for each g, Ty, by,..., Db, B, wed let oy ..., 0,4 De
such that the co-operator §;: A — A 1s smh that ¢y(6) = h{a,, vy Oy
where h is a vi-expression in T,y:

gilby, ..., bf%)®(6 = (@0, ..., b’u,;®a"vi)-

Proof. IPor the purposes of fhe proof I shall suppose that
BQRA is defined by the generators and relations in the theorem, and
I shall construet the isomorphisms ¢ (B QA4,0) (B, (4, ¢)) and

p: (B, (4, G)) > {BRA,0).

Definition of ¢. Given a T,-map F:B@A—%C‘, pf must be
a T-map from B to (4, (),

Given beB, p#(b) must be a 4',-map from A to 0.

Given wed, (p# (b))(a) must be an element in C.
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Define (pF (b))(a) = P (b Qa).
- Pirst verification. ¢F(b) is a Tymap. Use Type I relations.

Second verification. ¢F is a T;-map. Use Type II relations. -

Definition of ¢, Given a Tymap G:B —(4,0), »@ must be -
& Ty-map from BRA to O.
"~ Given beB,ucd, 9G(b®a) must be an element in (.

Detine pF(b®a) = (G(b))(a) and extend to a homomorphism,

Pirgt verification. 9@ can indeed be extended to all of B®.4,
One must show that the type I and IT equations do not obstruct.

Becond verification. @ is a Tymap. Automatic because 9G
was defined on the gencrators and extended.

Finally: ¢ and y ave inverses of each other.

epG = G because '

(ppl) (b) (0) = pE (b a) = (G(D))(a)
and yppll - F because |
(vpB) (D ®a) = (pF (D)) (a) = F(b®a).

COROLLARY. If B is o finilely generated T,-algebra and A is finately
generated as a Ty-algebra, then so 48 BRA. :
Af further, B and A are findtely related, then so is BRA.

Co-Lawvere fumectors. Given a theory-map 7, — T, we have seen
that the corresponding TLawvere functor 71 972 iy represented by
the free algebra Fe 5"t where F has a T,-co-structure induced by the
theory-map Ty —T,. The Co-Lewvere functor —QF : 5Tz > %71 hag
an even simpler construction then for general tensor products. Because
F ig generated by a single element one can show that B®F is fthe
T';-algebra generated by {b|beB} subject to the relations,

Jilbi, oy bo) = By ooy By whete  fieT,

and ¢; is the T',-expression determined by the theory map 7', — 1.
If all the operators in 7'y have ancestors in 7'y, e. g. when 7', can be

obtained from 7', by throwing away somse equations, then the Lawvere

funetor &7t — #*2 is just an inclusion and the co-Lawvers functor
ST > P71 gends BesTL to B mod the congruence generated by bhe
additional equations.

It — ', is one-to-one, i. e. T, can be obtained from T, by throwing
away some operators, then the Lawvere functor &7 — &2 is simply
a forgetful functor and the co-Liawvere functor is an inflationary
operation,
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Automorphisms on algebraic categories. Let 7: % —» &F alnd
81 ST — " be funcbors such that T8 and ST are naturally equivalent
to the identity functors. Because the hypotheses and conclusions of
the condition of Theorem 3 are all equivalent to categorically definable
statements and because the conditions are true for the identity functor,
they ave true for 7' and S. Hence 7 and § arve 1eplesentable by
finitely generated algebras:

Tee(4d,-), Sc<(B,—), A,Bep™.

It follows that 4 Q@B and B4 arve each isomorphie, as objects
n a&%, to the free algebra with its eanonieal co-structure, and the (t)
isomorphism says that 7 ~ —®RB, 8~ —®A4.

If we consider the isomorphism classes of finitely generated objects
in &% we obbain a semi-group under ® with neutral element F. The
- group of units is isomorphic to the automorphism-clags- -group of ST,
defined i [4] as the group of natural equivalence classes of auto-
morphisms. We shall denote that group by A(¥%). .

- Let A(T) be the group of antomorphisms of theory-maps of 7.
Let ¥ (T') be the unary expressions of T considered as a semi-group and
let G(T') be the group of units in ¥ (1'). For feG(T) the map ¢ : F — T’
defined by

@(g(mlﬁ vy mn-)) =1 (.f(ml)? ---:f(wn))

is a theory map. We obtain map G(T) > A(T), and we Gall its image
FA(T), the group of ¢nner-auiomorphisms on T.

PROPOSITION. @l A(T) if and only if the p-co-structure induced on T
s 1somorphic to the canonical co-structure.

Define SA(ST) to be the aubomorphisms that leave the free algebra
unchanged (up to isomorphisms).

PROPOSITION. SA4A(F%) =~ A(T)[IA(T

I &7 is an antonomous category, uhen SA(ST) is a normal sub-
group of A (&%), In general it ig not. The index of S§4 in 4 is as big as
the orbit of F, and it measures our inability to characterize the free
algebra using only category predicates.

Remark (added in proof). Lawvere has suggested that #ensor
products of theories be called Kronecker products. Though the same
symbol ® be retained, such usage will indeed remove a source of con-
fugion (see p. 93).
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