Functional models of full ground, and general,

reference cells

Work in Progress

Ohad Kammar
<ohad.kammar@cs.ox.ac.uk>
joint work with
Sean Moss

The 5t AcM siGPLAN Workshop on
Higher-Order Programming with Effects
18 September 2016

B8 UNIVERSITYOF .
EPSRC  I0EIY € CAMBRIDGE =

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



Kinds of local state

Semantic complications with dynamic allocation of arbitrary type:
» Locality: freshness of newly allocated cell.

» Non-ground: stored values can manipulate the memory store.
E.g. ref (bool —bool).

» Full storage: stored values may depend on store shape.
E.g., inhabitants ref (ref bool) require inhabitants of
ref bool.

This talk: full ground local state.
Success stories

» Operational semantics
» Step-indexing [Birkedal et al.'10 etc]

» Strategies over games

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



Denotational semantics for full ground state

» Sets with structure and structure preserving functions.
» Monadic (or adjunctive, following Levy'02).

» Extensional.

Applications

» Validation of compiler transformations.
» Analysis of ML's value restriction.

» Semantic correctness of Haskell's runST .

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



This talk

Contribution Tutorial and discussion
» General setting.
» Effect masking.
» Monads (not-quite) for full ground references.
» Denotational semantics for Haskell's runST .

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



Ground types [Levy'04,Murawski and Tzevelekos'12]

Ground types
Parameterised by a pair (C, Type), where
» C — a countable set of storable type names C;

» Type : C — G function
where the set G of ground types is:

G:=0|G+G|1|G xGy|ref C
Rationale
We can include circular data structures without complicating the

semantics further.
For example, taking C := {linked_list}, and:

Type(linked_list) := 1 + (bool x ref linked_list)

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



The category W

» Worlds w consist of:
» w=1{0,...,w — 1} a finite ordinal; and
» a function w: w — C

For example with C = { int, linked_list} and
w ={0: int,1:linked_list,2: int}
w’ = {0 : linked_list,1 : int,2: int,3: int}

» Morphism p : w — w’ are type-name-preserving injections
» p:w — w, such that:
» for all £ € w, we have w'(p(£)) = w.

In the example above, p: w — w':

p(i) == (i — 1) mod 4

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



Independence structure

W has a monoidal structure given by ordinal addition and
relabelling:

w1 wy = wa| + [wy

Wl(gl) ! = fl € w;y

® 0) =

And its coslices w/W have monoidal structure:

:01/, w1 Pl/, w1 \Z‘“’
w - N w \A> P1 Bw P2
P2 wa p2 w2 /L"w

whose action on the ordinals is given by:

p1LBw p2 = [wi| + [wa| — |w|

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



General setting

The functor category V := [W, Set]

» Bi-cartesian closed: interpret finite sums, products, and
function spaces.

> Interpret ground reference types:
[ref Clw :=w[C] [ref C]p:=pl,-1q
For example with C = { int, linked_list} and
w={0: int,1:linked_ list,2 : int}

we have
[ref int]w :={0,2}

We wantamonad T : VYV — V.

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



Correctness criteria

Semantics for local state
» Allocation, dereferencing, assignment.
» Usual equations [Levy'08].
» Adequacy.

Effect masking
A monad T : V — V validates effect masking when, for every two
constant functors ', A: W — Set, every morphism M : I — TA

factors uniquely:

r M TA

runST M * /r(;turn

A

(Natural, and holds for the ground state monad.)

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells




Two not-quite-right monads

Not enough structure
A store is given by:

w/W
S(w', w) = H / [Type(w’(ﬁ))ﬂ

Lew!

with the covariant action given by the independence monoidal
structure @,, and the monad is given by:

w/W
TAWZ=S(W,W)—>/ SxA

» Analogous to ground case. » No obvious interpretation
» Validates effect masking. for dereferencing.

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



Two not-quite-right monads

Too much structure
A store is given by:

S(w, w) = H [ Type(w'(€))] w
and the monad is given by:

o W—>W
TAw = / ) — / (0 ©w "0 @w ") x Alp' Bw ")
p' W—>W

» More natural store. » Doesn't validate effect
» Explicit use of @, masking.
» Interprets the operations.

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



runST -Haskell syntax

Syntax
M .=
X
LiA1+A2M
0
(M1, M>)
absurd M

Ax.M

My Ma
return M
My >= M,

M
Ml = M2
runST M

a.letref x; .= My, ..

match M with {1,x = M, 10y — M, }
match M; with () inM,
match M; with (x,y) inM,

 yXp = M,in M

term

variable
coproducts
unit value
pairing
empty
coproducts
unit type
pairs
abstraction
application
monadic return
monadic bind
allocation [Lev'02]
dereferencing
assignment

runST

deconstructors

deconstructors

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



runST -Haskell kinds and types

Syntax
a, 8 region variables
Ac=a1,...,qp kinds
A= types
G ground types
A + A coproducts
A1 X A products
Al — As functions
T, A ST monad

G:=0|G +Gy|1]| G xGy|ref C ground types

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



runST -Haskell kind and type system

Kinding judgements A - A

ag,...,ap A
al,...,a,,l— Ta,.A

Typing judgements A; T M : A

AT, xycrefy, G, ... x, ref, C,EM: TA
forall i: A; T, xq:vef, Ci,...,x,:refy, Co - M;: TypeC;

AT Haletref xg .= My,...,xp ;= MyinM: T,A

ATHEM: Tyref, C A;THEM:ref, C
AT M .= M : unit AT HIM : TypeC

AFT,A Ao TEFM:TLA
A:THFunST M : A

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells




runST -Haskell semantics

Kinds denote categories of worlds:
[a] =[] W
i€|al
Types A = A denote objects in Va7 := [[A], Set]. The monad
constructor is interpreted by:

[To, Al (Wi, ..o owpn) i= T(A(Wi, ..o, W1, —, Witl, ..., Wn) )W
Terms A; T+ M : A denote V[A}] morphisms:
[M]:[T]— [A]
Weakening of a type by a:
AFA
Aok A

is interpreted by a presheaf constant in the a-argument, and so the
effect masking property allows us to interpret runST .

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



Concluding remarks

» Still work in progress!
» Two monads (not) for local full ground references.

» Effect masking property and its applications.

Ohad Kammar <ohad.kammar@cs.ox.ac.uk> Functional reference cells



