
Isaac Newton Trust
Computer Laboratory

A general theory of type-and-effect systems
via universal algebra

Ohad Kammar Gordon Plotkin

Journées d’Informatique Fondamentale
de Paris Diderot
April 25, 2013

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Pure program transformations

Swap:
M;
K =

K ;
M

Cache:

let x = M in
let y = M in
K

=

let x = M in
let y = x in
K

No effects
M must not:

I Modify memory.
I Read memory.
I Raise exceptions.

I Be non-deterministic or
random.

Effect-dependent optimisations

Cache:

let x = M in
let y = M in
K

=

let x = M in
let y = x in
K

If either:

I M only reads.

I M only writes.

(but not both!)

I M raises exceptions.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Pure program transformations

Swap:
M;
K =

K ;
M

Cache:

let x = M in
let y = M in
K

=

let x = M in
let y = x in
K

No effects
M must not:

I Modify memory.
I Read memory.
I Raise exceptions.

I Be non-deterministic or
random.

Effect-dependent optimisations

Cache:

let x = M in
let y = M in
K

=

let x = M in
let y = x in
K

If either:

I M only reads.

I M only writes.

(but not both!)

I M raises exceptions.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Effect-dependent optimisations

Swap:
M;
K =

K ;
M

If either:

I M, K only read from memory.

I M, K are probabilistic or non-deterministic.

I M, K write to different physical memory addresses.

Effect-dependent optimisations

Cache:

let x = M in
let y = M in
K

=

let x = M in
let y = x in
K

If either:

I M only reads.

I M only writes.

(but not both!)

I M raises exceptions.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Effect-dependent optimisations

Cache:

let x = M in
let y = M in
K

=

let x = M in
let y = x in
K

If either:

I M only reads.

I M only writes.

(but not both!)

I M raises exceptions.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Type and effect systems

M : int 7−−−−−−−−→ M] : int ! {read, raise}

−→ typed source
effect analysis−−−−−−−−→ annotated code −→

Formalizing transformations

Γ ` M : A ! {read} Γ, x : A, y : A ` K : B ! ε

Γ `
let x = M in
let y = M in
K

=

let x = M in
let y = x in
K

: B ! ε

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Problem

I Validate optimisations.

Rigour is essential:

n effects =⇒ 2n effect sets

I Reuse the theory.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Problem

I Validate optimisations.
Rigour is essential:

n effects =⇒ 2n effect sets

I Reuse the theory.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Problem

I Validate optimisations.
Rigour is essential:

n effects =⇒ 2n effect sets

I Reuse the theory.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Contribution

Craft
case by case treatment
⇓

Science
general semantic account of Gifford-style effect type systems
⇓

Engineering

I results

I tools

I methods

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Structure

I Previous work

I Algebraic theory of effects

I Type-and-effect systems

I Optimisations

I Engineering

I Enrichment (optional)

I Conclusion and further work

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



A language a paper

I N. Benton and A. Kennedy. Monads, effects and
transformations, 1999.

I N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Reading,
writing and relations, 2006.

I N. Benton and P. Buchlovsky. Semantics of an effect analysis
for exceptions, 2007.

I N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Relational
semantics for effect-based program transformations with
dynamic allocation, 2007.

I N. Benton, A. Kennedy, L. Beringer, M. Hofmann. Relational
semantics for effect-based program transformations:
higher-order store, 2009.

I J. Thamsborg, L. Birkedal. A kripke logical relation for
effect-based program transformations, 2011.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Denotational semantics

I Types A denote sets ⟦A⟧, e.g.

⟦bit⟧ B {0, 1}
I Programs M : A denote elements, e.g., for global state:

⟦M⟧ ∈ ⟦bit⟧→ ⟦bit⟧× ⟦A⟧

Validity

An optimisation M = K is valid ⇐⇒ ⟦M⟧ = ⟦K⟧

Benton et al.
Denotational semantics to source and annotated languages

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Monads [Moggi’89]

Programs M : A of a sequential, effectful language denote
elements of ⟦M⟧ ∈ T ⟦A⟧ where T is a monad.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Marriage of effects and monads [Wadler and Thiemann’03]

Observation [Wadler’98]

Change notation:

Γ ` M : A ! ε =⇒ Γ ` M : TεA

TεA is an indexed family of monadic types.

ε4 Tε4

ε2

⊆
ε3

⊇
=⇒ Tε2

??

Tε3

__

ε1

⊇ ⊆
Tε1

__ ??

effect
inclusions

monad
morphisms

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Suggested monads for global state

T{read,write}(A) = ⟦bit⟧→ (⟦bit⟧× A)

T{read}(A) = ⟦bit⟧→ A T{write}(A) = ({?}+ ⟦bit⟧)× A

T∅(A) = A

??

/�

__

/ O

/ O

__

/�

??

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Universal algebra

Monoids

Groups

Signature σ: e : 0

(−)−1 : 1

∗ : 2

Equations E : e ∗ x = x

x−1 ∗ x = e

x ∗ e = x

x ∗ x−1 = e

x ∗ (y ∗ z) = (x ∗ y) ∗ z

Derived equations

E ` t = s : x ∗ (e ∗ y) = x ∗ (y ∗ e)

(
x−1

)−1
= x

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Universal algebra

Monoids Groups

Signature σ: e : 0 (−)−1 : 1

∗ : 2

Equations E : e ∗ x = x x−1 ∗ x = e

x ∗ e = x x ∗ x−1 = e

x ∗ (y ∗ z) = (x ∗ y) ∗ z

Derived equations

E ` t = s : x ∗ (e ∗ y) = x ∗ (y ∗ e)
(
x−1

)−1
= x

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Define:

Termsσ A B {t is a σ-term}

t ≈ s ⇐⇒ E ` t = s

TA B Termsσ A/≈

Then T is a monad, and, roughly, all monads arise thus.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Algebraic theory of effects [Plotkin and Power]

A theory for state

Memoids [Melliès]

Signature σ: read : 2

write0,

write1 : 1

Equations E : writeb(writeb′x) = writeb′x

read(write0x , write1x) = x

writeb(read(x0, x1)) = writebxb

The resulting monad satisfies TA ∼= ⟦bit⟧→ ⟦bit⟧× A.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



effects in annotations ↔ algebraic operations

subsets ε of σ ↔ subsignatures ε of σ

monads Tε ↔ theories 〈ε,Eε〉 where:

Eε B {E ` t = s|t, s are ε-terms}

e.g., for global state, Eε contains:

read(read(x0
0 , x

0
1 ), read(x1

0 , x
1
1 )) = read(x0

0 , x
1
1 )

We call Eε the conservative restriction of E to ε.
The conservative restriction is always defined, but may be hard to
calculate.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Theorem
The monad for the conservative restriction of global state to
read-only memory is:

T{read}A ∼= ⟦bit⟧→ A

Theorem
The monad for the conservative restriction of global state to
write-only memory is:

T{write0,write1}A
∼= ({?}+ ⟦bit⟧)× A

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



General type-and-effect systems

Plotkin and Power:

〈σ,E 〉 7−→ a source language Src and denotational semantics for it

Our extension:

〈σ,E 〉 7−→ an annotated language IL and denotational semantics for it

Define:
Erase : IL→ Src

Theorem
For all closed terms of ground type M : Tεbit, K : Tεbit,

⟦Erase(M)⟧ = ⟦Erase(K )⟧ ⇐⇒ ⟦M⟧ = ⟦K⟧

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Optimisation taxonomy

Structural optimisation

True for every 〈σ,E 〉:
I β, η laws

I sequencing laws: (M; N); K = M; (N; K )

also known as:

I constant propagation

I inlining

I common subexpression elimination

in the compiler literature.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Optimisation taxonomy

Local algebraic optimisations

Single equations from E , e.g.

writeb(read(x0, x1)) = writebxb

become optimisations

a := x ;
let y = !a in
K

=

a := x ;
let y = x in
K

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Optimisation taxonomy

Global algebraic optimisations

Overall interaction of effects. E.g., Discard:
Γ ` M : TεA Γ ` K : B

Γ `
let x = M in
K = K : B

originates from an absorption law:
for all n and ε-terms t(x1, . . . , xn),

t(x , . . . , x) = x

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Optimisation taxonomy

Global algebraic optimisations

Similarly,

Cache:

let x = M in
let y = M in
K

=

let x = M in
let y = x in
K

originates from an idempotency law:
for all n and ε-terms t(x1, . . . , xn),

t(t(x1
1 , . . . , x

1
n ), . . . , t(xn

1 , . . . , x
n
n )) = t(x1

1 , . . . , x
n
n )

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Optimisation taxonomy

New optimisations

The algebraic view is lightweight.
E.g., slight variation on idempotency:
for all n and ε-terms t(x1, . . . , xn),

t(t(x1, . . . , xn), . . . , t(x1, . . . , xn)) = t(x1, . . . , xn)

gives

let x = M in
M;
K

=
let x = M in
K

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Modularity

Theorem
A theory 〈ε,E 〉 validates the Discard optimisation if and only if for
every op : n in ε

op(x , ..., x) = x

Similarly for Swap, but not for Cache.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Towards engineering

A decision procedure for each optimisation: given ε, is the
optimisation valid?
optimisation tables for operation-wise valid optimisations.

Discard
toss read write throw get put

ζ 1 1 0 0 0 0

Swap toss read write throw get put

toss 1 1 1 1 0 0
read 1 1 0 1 1 1
write 1 0 0 0 1 1
throw 1 1 0 0 0 0
get 0 1 1 0 0 0
put 0 1 1 0 0 0

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Enrichment (optional)

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Enrichment (optional)

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Further work

I More sophisticated setting: domains, locality, concurrency.
I Extend the algebraic theory of effects.
I Extend equational logic.

I Foundations of global optimisations.
I Syntactic facets:

I Effect inference.
I Sub-effecting and effect polymorphism.

I Richer effect systems.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Further work

I More sophisticated setting: domains, locality, concurrency.
I Extend the algebraic theory of effects.
I Extend equational logic.

I Foundations of global optimisations.
I Syntactic facets:

I Effect inference.
I Sub-effecting and effect polymorphism.

I Richer effect systems.

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra



Contribution

Craft
case by case treatment
⇓

Science
general semantic account of Gifford-style effect type systems
⇓

Engineering

I results

I tools

I methods

Ohad Kammar, Gordon Plotkin A general theory of type-and-effect systems via universal algebra


