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What is statistical probabilistic programming?

Bayesian data modelling

1. Develop a probabilistic (generative) model.

2. Design an inference algorithm for the model.

3. Using the algorithm, fit the model to the data.
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What is statistical probabilistic programming?

Example

Acidity in soil

pH

distance (km)
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What is statistical probabilistic programming?

Generative model

s ∼ normal(0, 2)
b ∼ normal(0, 6)
f(x)= s · x+ b
yi = normal(f(i), 0.5)

for i = 0 . . . 6

Conditioning

y0 = 0.6, y1 = 0.7, y2 = 1.2, y3 = 3.2, y4 = 6.8, y5 = 8.2, y6 = 8.4

Predict f?
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Cai, Ghahramani, Heunen, Kammar,Moss, Ostermann, Ścibior, Staton, Vákár, andYang Qbses and Bayesian inference



What is statistical probabilistic programming?

Bayesian inference

P (s, b|y0, . . . , y6) =
P (y0, . . . , y6|s, b) · P (s, b)

P (y0, . . . , y6)

Prior

Posterior
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What is statistical probabilistic programming?

Bayesian inference

P (s, b|y0, . . . , y6) =
P (y0, . . . , y6|s, b) · P (s, b)

P (y0, . . . , y6)

Prior Posterior
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What is statistical probabilistic programming?

Probabilistic programming models

1. Develop a probabilistic (generative) model.
Write a program.

2. Design an inference algorithm for the model.

3. Using the built-in algorithm, fit the model to the data.
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What is probabilistic programming?

In Anglican [Wood et al.’14]

(let [s (sample (normal 0.0 2.0))

b (sample (normal 0.0 6.0))

f (fn [x] (+ (* s x) b)))]

(predict :f f))
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What is probabilistic programming?

In Anglican [Wood et al.’14]

(let [s (sample (normal 0.0 2.0))

b (sample (normal 0.0 6.0))

f (fn [x] (+ (* s x) b)))]

(observe (normal (f 1.0) 0.5) 2.5)

(observe (normal (f 2.0) 0.5) 3.8)

(observe (normal (f 3.0) 0.5) 4.5)

(observe (normal (f 4.0) 0.5) 6.2)

(observe (normal (f 5.0) 0.5) 8.0)

(predict :f f))
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What is probabilistic programming?

Components

▶ Control flow, e.g.: simply typed λ-calculus

▶ data types, e.g.: lists, functions, thunks

▶ Continuous probabilistic choice: (sample (normal 0.0 2.0))

▶ Conditioning: (observe (normal (f 2.0) 0.5) 3.8)

▶ Inference

posterior ∝ liklihood× prior

Which we refine to:

posterior = weight⊙ prior
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Some measure theory

Rescaling

ν = w ⊙ µ

when for all χ : X → [0,∞]:∫
X
χ(x)ν(dx) =

∫
X
χ(x) · w(x)µ(dx)

(where X measurable space, µ ∈MX measures on X,
w : X → [0,∞] measurable function )
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What is probabilistic programming?

A probabilistic program is a measure

For t : X
⟦t⟧ = w ⊙ prior ⟦t⟧

where prior ⟦t⟧ is the prior (ignore conditioning),

and w = d⟦t⟧
d(prior⟦t⟧)

Conditioning

t : x φ : X → [0,+∞]

observe(t, φ) : 1

and
⟦observe⟧ (x, φ) = φ(x)⊙ δ()
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What is probabilistic programming?

A probabilistic program is a measure

For t : X
⟦t⟧ = w ⊙ prior ⟦t⟧

where prior ⟦t⟧ is the prior (ignore conditioning),

and w = d⟦t⟧
d(prior⟦t⟧)

Conditioning

Replace observe by score :

r : [0,∞]

score r : 1

and
⟦score ⟧ (r) = r ⊙ δ()
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What is probabilistic programming?

A probabilistic program is a measure

For t : X
⟦t⟧ = w ⊙ prior ⟦t⟧

where prior ⟦t⟧ is the prior (ignore conditioning),

and w = d⟦t⟧
d(prior⟦t⟧)

Note
For probability measures prior ⟦t⟧:

▶ It’s possible that maxw > 1, e.g.:
0

1

2

0 0.25 0.5 0.75 1

β(0.5, 0.5)

or even maxw =∞
▶ If we insist that all measures are sub-probability measures,

then w and ⟦t⟧ are not compositional (i.e., global)
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What is probabilistic programming?

A probabilistic program is an s-finite measure [Staton’17]

For t : X
⟦t⟧ = w ⊙ prior ⟦t⟧

where prior ⟦t⟧ is the prior (ignore conditioning),

and w = d⟦t⟧
d(prior⟦t⟧)

Sampling manipulates prior.
Conditioning affects w, sequenced multiplicatively.

S-finite measures ∑
i∈N

µi

µi finite: µi(X) <∞
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What is inference?

Computing distributions

For t : X
⟦t⟧ = w ⊙ prior ⟦t⟧

we want to:

▶ Plot ⟦t⟧.
▶ Sample ⟦t⟧ (e.g., to make prediction)

Challenge

Given a fair coin (12δ1 +
1
2δ0), how do we sample from a biased

coin (pδ1 + (1− p)δ0)?
Generalise:
Given a prior distribution prior ⟦t⟧, how do we sample from ⟦t⟧?
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What is inference?

Inference engine

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn−1

Programming-language experts needed

In the traditional areas:

▶ Verification

▶ Correctness

▶ Static analysis

▶ Semantics

▶ Optimisation

▶ Programming
abstractions

▶ Type systems
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This talk

Correctness of inference
Inference algorithm: distribution/meaning preserving
transformation from one inference representation to another

Requirements

▶ Represented data is continuous

▶ Compositional inference representations (IRs)

▶ IRs are higher-order

Traditional measure theory is unsuitable:

Theorem (Aumann’61)

The set Meas(R,R) cannot be made into a measurable space with

eval : Meas(R,R)× R→ R

measurable.
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Contribution

Correctness of inference

▶ Modular validation of inference algorithms:
Sequential Monte Carlo, Trace Markov Chain Monte Carlo
By combining:

▶ Synthetic measure theory [Kock’12]: measure theory without
measurable spaces

▶ Quasi-Borel spaces: a convenient category for higher-order
measure theory [LICS’17]
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Talk structure

▶ Probabilistic programming and Bayesian inference

▶ Synthetic measure theory

▶ Quasi-Borel spaces

▶ Inference representations

▶ Ongoing work

▶ Conclusion
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Synthetic measure theory: axioms

Measure category [Kock’12]

A pair (C,M)

▶ Cartesian-closed category C

▶ Countable coproducts and countable limits

▶ M = (M, return , >>= ) a strong commutative monad, i.e.:

▶ Canonical morphisms are invertible:

M0 ∼= 1 M(
⨿
n∈N

X) ∼=
∏
n∈N

MX
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▶ Cartesian-closed category C
▶ Countable coproducts and countable limits

▶ M = (M, return , >>= ) a strong commutative monad, i.e.:

M : |C| → |C| returnX : X → MX

>>=X,Y : MX × (MY )X → MY

satisfying the monad laws and

T .do {x← a; y ← b;return(x, y)}
=

T .do {y ← b;x← a;return(x, y)}
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⨿
n∈N

X) ∼=
∏
n∈N

MX
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Synthetic measure theory: consequences

Surprisingly rich structure

▶ 0 : 1→ M0

▶
∑

n∈NX :
∏

i∈NMX ∼= M(
⨿

i∈NX)
M∇−−→ MX

▶ R := M 1 a σ-semiring:

(·) : R×R
double strength−−−−−−−−−→ R 1 := return() ∈ R

▶ Every algebra is an R-module:

⊙ : R×MX
strength−−−−−→ MX

▶ Associated affine monad:

PX
subX MX

M!−−−−−−→→
1

R
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Synthetic measure theory: notation

Kock integration �
X

f(x)µ(dx) B µ >>= f

▶ Measure-valued, hence analogous to∫
X
χ(x) · f(x)µ(dx)

for generic χ : X → [0,∞)

▶ η-expanded integrand
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Synthetic measure theory: notation

Notation Meaning Terminology

R B M1 Scalars
f∗µ B (M f)(µ) Push-forward

µ(X) B !∗µ The total measure

δx B return(x) Dirac distribution�
X
f(x)µ(dx) B µ >>= f Kock integral

w ⊙ µ B
�
X
(w(x)⊙ δx)µ(dx) Rescaling�

Y
f(x, y)k(x,dy) B

�
Y
f(x, y)k(x)(dy) Kernel integrationP

X×Y
f(x, y)µ(dx,dy) B

�
X×Y

f(z)µ(dz) Iterated integrals

µ⊗ ν B
�
X

(�
Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] B µ >>= f Expectation∫
X f(x)µ(dx) B ER

x∼µ[f(x)] Lebesgue integral
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Cai, Ghahramani, Heunen, Kammar,Moss, Ostermann, Ścibior, Staton, Vákár, andYang Qbses and Bayesian inference



Synthetic measure theory: notation

Notation Meaning Terminology

R B M1 Scalars
f∗µ B (M f)(µ) Push-forward

µ(X) B !∗µ The total measure

δx B return(x) Dirac distribution�
X
f(x)µ(dx) B µ >>= f Kock integral

w ⊙ µ B
�
X
(w(x)⊙ δx)µ(dx) Rescaling�

Y
f(x, y)k(x,dy) B

�
Y
f(x, y)k(x)(dy) Kernel integration

P
X×Y

f(x, y)µ(dx,dy) B
�
X×Y

f(z)µ(dz) Iterated integrals

µ⊗ ν B
�
X

(�
Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] B µ >>= f Expectation∫
X f(x)µ(dx) B ER

x∼µ[f(x)] Lebesgue integral

Cai, Ghahramani, Heunen, Kammar,Moss, Ostermann, Ścibior, Staton, Vákár, andYang Qbses and Bayesian inference



Synthetic measure theory: notation

Notation Meaning Terminology

R B M1 Scalars
f∗µ B (M f)(µ) Push-forward

µ(X) B !∗µ The total measure

δx B return(x) Dirac distribution�
X
f(x)µ(dx) B µ >>= f Kock integral

w ⊙ µ B
�
X
(w(x)⊙ δx)µ(dx) Rescaling�

Y
f(x, y)k(x,dy) B

�
Y
f(x, y)k(x)(dy) Kernel integrationP

X×Y
f(x, y)µ(dx,dy) B

�
X×Y

f(z)µ(dz) Iterated integrals

µ⊗ ν B
�
X

(�
Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] B µ >>= f Expectation∫
X f(x)µ(dx) B ER

x∼µ[f(x)] Lebesgue integral
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�
X×Y

f(z)µ(dz) Iterated integrals

µ⊗ ν B
�
X

(�
Y
δ(x,y)ν(dy)

)
µ(dx) Product measure

EA
x∼µ[f(x)] B µ >>= f Expectation∫
X f(x)µ(dx) B ER

x∼µ[f(x)] Lebesgue integral
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Synthetic measure theory: Radon-Nikodym

Radon-Nikodym derivatives

▶ ν Î µ when ν = w ⊙ µ;

▶ w and v are equal µ-almost everywhere when
w ⊙ µ = v ⊙ µ.

▶ Measurable property: P : X → bool, induces
[P ] : X → [0,∞]

▶ P over X holds µ-a.e. when [P ] = 1 µ-a.e..

Theorem (Radon-Nikodym)

Let (C,M) be a well-pointed measure category. For every ν Î µ in

MX, there exists a µ-a.e. unique morphism dν
dµ

: X → R satisfying
dν
dµ ⊙ µ = ν.
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Talk structure

▶ Probabilistic programming and Bayesian inference

▶ Synthetic measure theory

▶ Quasi-Borel spaces

▶ Inference representations

▶ Ongoing work

▶ Conclusion
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Brief measure theory

Measures subsets of R
Borel subsets B(R) as closure under:

▶ Intervals [a, b].

▶ Countable unions.

▶ Complements.

φ : R→ R is measurable when:

B ∈ B(R) =⇒ φ−1[B] ∈ B(R)
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Source of randomness

Key idea

Propagating randomness from discrete and continuous sampling:

α : I→ X

along “random elements”:

▶ for measurable spaces: derived through measurable functions;

▶ for quasi-Borel spaces: axiomised through structure.
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The category Qbs

Objects

A quasi-Borel space X =
(
|X|,MX

)
consists of:

▶ a carrier set X;

▶ a set of random elements MX ⊆ |X|I

such that the random elements are closed under:

▶ constant functions c;

▶ precomposition with a measurable φ : I→ I
▶ countable measurable case split.
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The category Qbs

Objects

A quasi-Borel space X =
(
|X|,MX

)
consists of:

▶ a carrier set X;

▶ a set of random elements MX ⊆ |X|I

such that the random elements are closed under:

▶ constant functions c;

▶ precomposition with a measurable φ : I→ I
▶ countable measurable case split.

α(r)=c7−−−−→
c
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The category Qbs

Objects

A quasi-Borel space X =
(
|X|,MX

)
consists of:

▶ a carrier set X;

▶ a set of random elements MX ⊆ |X|I

such that the random elements are closed under:

▶ constant functions c;

▶ precomposition with a measurable φ : I→ I

▶ countable measurable case split.

φ7−→ α7−→
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The category Qbs

Objects

A quasi-Borel space X =
(
|X|,MX

)
consists of:

▶ a carrier set X;

▶ a set of random elements MX ⊆ |X|I

such that the random elements are closed under:

▶ constant functions c;

▶ precomposition with a measurable φ : I→ I
▶ countable measurable case split.

case{Sn.αn|n∈N}7−−−−−−−−−−−→
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The category Qbs

Morphisms f : X → Y

Functions f : |X| → |Y | such that:

α ∈MX =⇒ f ◦ α ∈MY
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Categorical structure

Measurable spaces

Adjunction with measurable spaces (M ∈ CMeas, X ∈ Qbs):

MQbsM := CMeas(R,M)
Σ(CMeasX):=

{
B ⊆ X

∣∣∀α ∈MX , α−1[X] ∈ B(R)
}

Set

Qbs Meas

Meas

Qbs

⊥

=

NB: CMeas ◦QbsX = X for standard Borel spaces X.
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Categorical structure

Free and cofree spaces

Equip a set A ∈ Set with:

MFreeA :=
{
case {Sn.an|n ∈ N}

∣∣(Sn) a measurable partition
}

MCofreeA:= AR

Set Qbs

Free

Cofree

⊥
⊥
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Categorical structure

Products
Correlated random elements:

MX×Y :=
{
r 7→

(
α(r), β(r)

)∣∣∣α ∈MX , β ∈MY

}

Function spaces∣∣∣Y X
∣∣∣:= Qbs(X,Y )

MY X :=
{
f : R→

∣∣∣Y X
∣∣∣∣∣∣∣uncurry f ∈ Qbs(R×X,Y )

}
NB: XR = MX
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Categorical structure

Subspaces

Every subset S ⊆ |X| inherits the subspace structure:

MS := {α : R→ S|α ∈MX}

equiv. a strong sub-object.

More structure
Coproducts, limits, colimits, Grothendieck quasi-topos, locally
presentable, . . .
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The commutative monad

Measures
(Ω, α, µ):

▶ Ω is a standard Borel space

▶ α ∈ XΩ

▶ and µ is a σ-finite measure on Ω

Induced integration operator

For f : X → [0,∞]:∫
f d(Ω, α, µ) B

∫
Ω f(α(x))µ(dx)

Monad of measures
(Ω, α, µ) ≈ (Ω′, α′, µ′) when they determine the same integration
operator.
MX consists of equivalence classes of ≈.
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A synthetic model

The measure category (Qbs,M)

▶ Qbs(1, R) ∼=σ [0,∞];

▶ Qbs(R, 1 + 1) ∼= B([0,∞]) as characteristic functions

▶ Qbs(R,R) ∼= Meas([0,∞], [0,∞])

▶ Giry [0,∞] ↣ Qbs(1,M(R)) ↣ Measures [0,∞]

▶ RR ×M(R)→ R, (f, µ) 7→
∫
f(x)µ(dx) is the Lebesgue

integral
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Talk structure

▶ Probabilistic programming and Bayesian inference

▶ Synthetic measure theory

▶ Quasi-Borel spaces

▶ Inference representations

▶ Ongoing work

▶ Conclusion
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Representations

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn−1

Program representation

A representation T (T , returnT , >>=T ,mT ) consists of:

▶ (T , returnT , >>=T ): monadic interface;

▶ m
T
X : T X → MX: meaning morphism for every space X

and mT preserves returnT and >>=T :

returnM x = m(returnT x)

m(a >>=T f) = (ma) >>=M λx. m(f x)
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Representations

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn−1

Example representation: lists

instance Rep (List)where
returnx = [x]
xs >>= f = foldr [ ]

(λ(x, ys).
f(x) ++ ys) xs

mList[x1, . . . , xn]=
∑n

i=1 δxi

Cai, Ghahramani, Heunen, Kammar,Moss, Ostermann, Ścibior, Staton, Vákár, andYang Qbses and Bayesian inference



Representations

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn−1

Sampling representation

(T , returnT , >>=T ,mT , sampleT )

▶ (T , returnT , >>=T ,mT ): program representation

▶ sampleT : 1→ T I
and mT ◦sampleT = UI
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Representations

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn−1

Example: free sampler

Samα B {Returnα
∣∣ Sample (I→ Samα)}:

instance Sampling Rep (Sam)where
returnx = Returnx
a >>= f = match awith {

Returnx→f(x)
Sample k→
Sample (λr. k(r) >>= f)}

sample = Sampleλr. (Return r)
ma = match awith {

Returnx→δx
Sample k→

�
Im(k(x))U(dx)}
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Representations

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn−1

Conditioning representation

(T , returnT , >>=T ,mT , scoreT )

▶ (T , returnT , >>=T ,mT ): program representation

▶ scoreT : [0,∞)→ T 1

and mT ◦ scoreT r = r ⊙ δ()
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Representations

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn−1

Weighted values

For every representation T , W T X B T (R+ ∗X)

instance Conditioning Rep (W T )where
returnW T x= returnT (1, x)
a >>=W T f = T .do {(r, x)← a;

(s, y)← f(x);

return(r · s, y)}
mW T a = λx.

�
R+×X

r ⊙ δxm
T (a)(dr,dx)

scoreW T r = returnT (r, ())
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Representations

Model SamplerIR1 IR2 IRn· · ·t1 t2 tn−1

Inference representation

(T , returnT , >>=T , sampleT scoreT ,mT ): sampling and
conditioning

Example: weighted sampler

WSamX := WSamX = Sam([0,∞)×X)
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Inference transformations

t : T → S

t : T X → S X for every space X such that:

mS ◦ t = mT

A single compositional step in an inference algorithm

Unnaturality

aggrX : List(R+ ∗X)→ List(R+ ∗X)
aggregating (r, x), (s, x) to (r + s, x)
Then aggr : List→ List but not natural:

aggr ◦ List! [(12 ,False), (
1
2 ,True)][(1, ())]

̸= [(12 , ()), (
1
2 , ())]Enum! ◦ aggr [(12 ,False), (

1
2 ,True)]
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MonadBayes: Modular implementation

Performance evaluation (1)
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MonadBayes: Modular implementation

Performance evaluation (2)
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Ongoing work: term and type recursion

ω-quasi-Borel spaces

P =
(
|P |,≤P ,MP

)
:

ωQbs ωQbs

Qbs Qbs

ωCpo ωCpo

Set Set Set

Mod(ωqbs,Set)

Mod(ωcpo,Set)

Mod(qbs,Set)

≃ ≃

≃ ≃

≃ ≃

▶ (P,≤P ) is an ω-cpo;

▶ (P,MP ) is a qbs; and

▶ MP is pointwise ω-chain closed.

and Scott-continuous qbs-morphisms

Axiomatic domain theory [Fiore’94]

Model of Fiore’s axiomatic domain theory, with admissible maps
f : P ↣ Q are Scott-open and Borel open:

f [P ] ∈ ΣQ =
{
S ⊆ |Q|

∣∣∣∀α ∈MQ.α
−1[S] ∈ B

}
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Contribution

Correctness of inference

▶ Modular validation of inference algorithms:
Sequential Monte Carlo, Trace Markov Chain Monte Carlo
By combining:

▶ Synthetic measure theory [Kock’12]: measure theory without
measurable spaces

▶ Quasi-Borel spaces: a convenient category for higher-order
measure theory [LICS’17]

Cai, Ghahramani, Heunen, Kammar,Moss, Ostermann, Ścibior, Staton, Vákár, andYang Qbses and Bayesian inference



Conclusion

Summary

▶ Bayesian inference: (continuous) sampling and conditioning

▶ Inference representation: monadic interface, sampling,
conditioning, and meaning

▶ Plenty of opportunities for traditional programming language
expertise

Further topics

▶ Sequential Monte Carlo (SMC)

▶ Markov Chain Monte Carlo (MCMC) and
Metropolis-Hastings-Green Theorem for Qbs

▶ Combining SMC and MCMC into Move-Resample SMC
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