
supported by:
Facebook Research
NCSC

Foundations for
Type-Driven Probabilistic Modelling

Ohad Kammar
University of Edinburgh

Logic and Semantics Group
3 February, 2026

Department of Computer Science
University of Aarhus

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Computational golden era

logic-rich & type-rich computation

▶ Expressive type systems: Haskell, OCaml, Rust, Agda, Idris

▶ Mechanised mathematics: Agda, Rocq, Isabelle/HOL, Lean

▶ Verification: SMT-powered real-world systems

statistical computation

Generative modelling with efficient inference: Monte-Carlo simulation or
gradient-based optimisation

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Computational golden era

logic-rich & type-rich computation

▶ Expressive type systems: Haskell, OCaml, Rust, Agda, Idris

▶ Mechanised mathematics: Agda, Rocq, Isabelle/HOL, Lean

▶ Verification: SMT-powered real-world systems

statistical computation

Generative modelling with efficient inference: Monte-Carlo simulation or
gradient-based optimisation

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

This course

Typed interface to probability/statistics

Every concept has:

course page

▶ a type

▶ associated operations

▶ properties in terms of these operations.

Two implementations/models

discrete model
familiar maths
introductory

↪→ full model
supports discrete

and
continuous distributions

same language

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

https://www.denotational.co.uk/tdpm-aarhus-course-2026/

Motivation: why foundations?

discrete probability
countably supported distributions
good type-structure
(this course)

measure theory
standard, established
poor type-structure

⤥ well-behaved probability
s-finite distributions
over standard Borel spaces

4

continuous probability
Lebesgue measure over Rn

4 ⤥ quasi-Borel spaces
new, experimental
rich type-structure
(this course)

Takeaway

Use types to abstract away from the model

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Motivation: why types?

▶ spotlights meaningful operations

∫
: (DistributionX)× (RandomVariableX)→ [0,∞]

▶ document intent:

probability (DistributionX) vs. density (X → [0,∞]) vs. random variable

▶ succinctness: omit and elaborate details

▶ especially formal types, allow using theory correctly without fully understanding it

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Lecture plan

course page

Lecture 1: discrete model (now)

▶ Motivation

▶ Language of probability and distribution

▶ Discrete model

▶ Simply-typed probability

▶ Dependently-typed probability

Lecture 2: the full model

ask questions on the
Scottish PL Institute
Zulip stream #qbs

▶ Borel sets and measurable spaces

▶ Quasi-Borel spaces

▶ Type structure & standard Borel spaces

▶ Integration & random variables

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

https://www.denotational.co.uk/tdpm-aarhus-course-2026/
https://spls.zulipchat.com/#narrow/channel/321584-qbs

Language of probability & distribution

X type (=space) of values/outcomes
DX type of distributions/measures over X

PX ⊆ DX sub-type of probability distributions over X

BX ⊆ PX type of events: subsets we wish to measure

W type of weights: values in [0,∞]∫
,E Lebesgue integration and the expectation operation

Type judgements describe well-formed values/outcomes of a given type, e.g.:

µ : DX,E : BX ⊢ Ce
µ
[E] : W

(measures weight Ceµ [E] of event E according to distribution µ)

Propositions describe properties of well-formed values/outcomes of a given type, e.g.:

y1, y2 : Y ⊢ y1
Y
= y2 : Prop µ : PX,E : BX ⊢ Pr

µ
[E] = Ce

µ
[E]

(probability of event according to probability distribution is its measure)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Axioms for events and distributions

Empty event

∅ : BX

Empty events weight zero

µ : DX ⊢ Ce
µ
[∅] = 0

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Axioms for events and distributions

Boolean Sub-algebra of Events

E : BX ⊢ E∁ : BX E,F : BX ⊢ E∩F : BX so also: E,F : BX ⊢ X,E∪F : BX
Disjoint additivity

w, v : W ⊢ w + v : W E,C : BX , µ : DX ⊢ Ce
µ
[E] = Ce

µ
[E ∩ C] + Ce

µ

[
E ∩ C∁

]

Exercise
Derive ‘axiomatically’ that:

▶ measurement is monotone:

µ : DX,E ⊆ F ⊢ Ce
µ
[E] ≤ Ce

µ
[F]

▶ the inclusion-exclusion principle:

µ : DX,E, F : BX ⊢ Ce
µ
[E ∪ F] + Ce

µ
[E ∪ F] = Ce

µ
[E] + Ce

µ
[F]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Axioms for events and distributions

Boolean Sub-algebra of Events

E : BX ⊢ E∁ : BX E,F : BX ⊢ E∩F : BX so also: E,F : BX ⊢ X,E∪F : BX
Disjoint additivity

w, v : W ⊢ w + v : W E,C : BX , µ : DX ⊢ Ce
µ
[E] = Ce

µ
[E ∩ C] + Ce

µ

[
E ∩ C∁

]
Exercise
Derive ‘axiomatically’ that:

▶ measurement is monotone:

µ : DX,E ⊆ F ⊢ Ce
µ
[E] ≤ Ce

µ
[F]

▶ the inclusion-exclusion principle:

µ : DX,E, F : BX ⊢ Ce
µ
[E ∪ F] + Ce

µ
[E ∪ F] = Ce

µ
[E] + Ce

µ
[F]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Axioms for events and distributions

Consider posets:
ω B (N,≤) (BX ,⊆) (W,≤)

ω-chains in a poset P = (P ,≤):

Pω B
{
p←∈ PN

∣∣p0 ≤ p1 ≤ · · ·
}

Chain-closure of events and weights

E← : (BX ,⊆)ω ⊢
⋃

nEn : BX w← : (W,≤)ω ⊢ supnwn : W

Scott-continuity of measurement

E← : (BX ,⊆)ω, µ : DX ⊢ Ceµ [
⋃

nEn] = supnCeµ [En]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Axiom for probability

Probability distributions have total mass one

PX B {µ ∈ DX|Ceµ [X] = 1} µ : PX ⊢ castµ : DX

i.e., if we define:

I B [0,1] µ : PX,E : BX ⊢ Pr
µ
[E] B Ce

castµ
[E] : I

then:
µ : PX ⊢ Pr

µ
[X] = 1

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Integration

Lebesgue integration w.r.t. a distribution

µ : DX, f : WX ⊢
∫
µ(dx)f(x) : W

(NB: We succinctly write WX for the type of functions X → W.)

Expectation w.r.t. a probability distribution

µ : PX, f : WX ⊢ Ex∼µ [f(x)] B

∫
(castµ)(dx)f(x) : W

We’ll use variations on this notation, e.g.:∫
dµf,

∫
fdµ,

∫
f(x)µ(dx),Eµ [f]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Summary

Have: Language and (some) axioms

Want: Model

Today: discrete model

Next week: full model

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Lecture plan

course page

Lecture 1: discrete model (now)

▶ Motivation

▶ Language of probability and distribution

▶ Discrete model

▶ Simply-typed probability

▶ Dependently-typed probability

Lecture 2: the full model

ask questions on the
Scottish PL Institute
Zulip stream #qbs

▶ Borel sets and measurable spaces

▶ Quasi-Borel spaces

▶ Type structure & standard Borel spaces

▶ Integration & random variables

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

https://www.denotational.co.uk/tdpm-aarhus-course-2026/
https://spls.zulipchat.com/#narrow/channel/321584-qbs

Discrete model

X: types denote sets

DX: set of histograms:

DX B {µ : X → W|µ is countably supported }

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Discrete model

X: types denote sets
DX: set of histograms:

DX B {µ : X → W|µ is countably supported (next slide)}

B {µ : X → W|∃S ∈ PX.S is countable}
B {µ : X → W|suppµ is countable}

X

µx0 = 2 µx1 = 3 µx2 = 2

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Countably supported distributions

Support

A subset S supports a weight function µ : X → W when µ is 0 outside S:

µ : WX , S : PX ⊢ S supports µ B (∀x : X.(µx > 0) =⇒ x ∈ S) : Prop

The subsets supporting a weight function µ are closed under intersections.
=⇒ There is a smallest supporting subset, called the support of µ:

µ : WX ⊢ suppµ B {x ∈ X|µx > 0}

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Discrete model

X: types denote sets
DX: set of histograms:

DX B {µ : X → W|µ is countably supported }
B {µ : X → W|∃S ∈ PX.S is countable}
B {µ : X → W|suppµ is countable}

X

µx0 = 2 µx1 = 3 µx2 = 2

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Example distributions

Counting distribution

Counts the outcomes in a countable subset:

S : PctblX ⊢#S B

(
λx.

{
x ∈ S : 1

x /∈ S : 0

)
: DX

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Example distributions

Dirac
A point mass:

x : X ⊢ δx B

(
λx′.

{
x′ = x : 1

x′ ̸= x : 0

)
: DX

(NB: x : X ⊢ δx = #{x}.)
Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Example distributions

Zero
No mass anywhere:

⊢ 0 B 0 B (λx.0) : DX

(NB: ⊢ 0 = #∅.)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Discrete model

X: types denote sets

DX: set of histograms:

DX B {µ : X → W|µ is countably supported }

BX : every subset can be measured:

BX B PX

Measurement: weighted sum of all (supported) outcomes:

µ : DX,E : BX ⊢ Ce
µ
[E] B

∑
x∈E

µx

B
∑
x∈E∩suppµ

µx

NB: µ : DX,E : BX , S : PctblX,S supports µ ⊢ Ceµ [E] =
∑

x∈E∩S µx.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Example measurements

(NB: µ : DX,E : BX , S : PctblX,S supports µ ⊢ Ceµ [E] =
∑

x∈E∩S µx.)

Counting distribution

counts supported outcomes

S : PctblX,E : BX ⊢ Ce
#S

[E] = |E ∩ S| B

{
E ∩ S has n ∈ N elements: n

E ∩ S is infinite: ∞

Dirac
detects given outcome:

x : X,E : BX ⊢ Ceδx [E] =

{
x ∈ E : 1

x /∈ E : 0

Zero
measures every event as zero:

E : BX ⊢ Ce0 [E] = 0

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Example measurements

(NB: µ : DX,E : BX , S : PctblX,S supports µ ⊢ Ceµ [E] =
∑

x∈E∩S µx.)

Counting distribution

counts supported outcomes

S : PctblX,E : BX ⊢ Ce
#S

[E] = |E ∩ S| B

{
E ∩ S has n ∈ N elements: n

E ∩ S is infinite: ∞

Dirac
detects given outcome:

x : X,E : BX ⊢ Ceδx [E] =

{
x ∈ E : 1

x /∈ E : 0

Zero
measures every event as zero:

E : BX ⊢ Ce0 [E] = 0

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Example measurements

(NB: µ : DX,E : BX , S : PctblX,S supports µ ⊢ Ceµ [E] =
∑

x∈E∩S µx.)

Counting distribution

counts supported outcomes

S : PctblX,E : BX ⊢ Ce
#S

[E] = |E ∩ S| B

{
E ∩ S has n ∈ N elements: n

E ∩ S is infinite: ∞

Dirac
detects given outcome:

x : X,E : BX ⊢ Ceδx [E] =

{
x ∈ E : 1

x /∈ E : 0

Zero
measures every event as zero:

E : BX ⊢ Ce0 [E] = 0

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

The discrete model validates the axioms

Exercise

µ : D ⊢ Ce
µ
[∅] = 0

E,C : BX , µ : D ⊢ Ce
µ
[E] = Ce

µ
[E ∩ C] + Ce

µ

[
E ∩ C∁

]

E← : (BX ,⊆)ω, µ : Dx ⊢ Ce
µ

[⋃
n

En

]
= sup

n
Ce
µ
[En]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Parameterised distributions

Kernel
k : X ⇝ Y from X to Y : function k : X → DY .

Kernels are open/parameterised distributions.

Examples

Dirac and the counting distribution form kernels:

δ− : X ⇝ DX #− : PctblX ⇝ DX

NB: This definition is internal: when we consider the full model, we will define kernels
as those functions internal to the model rather than the set-theoretic functions.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Action of kernels on distributions

Kock integral

µ : DX, k : (DY)X ⊢
∮
dµk : DY

This distribution-valued integral is implicit in many probability texts. It corresponds
to integrating against an arbitrary weight function or random variable.

Discrete model interpretation∮
dµk B λy.

∑
x∈X

µx · k(x; y)

B λy.
∑
x∈suppµ

µx · k(x; y)

NB1: we write k(x; y) B k(x)(y) for the uncurried function.

NB2: µ : DX, k : (DY)X , S : PctblX,S supports µ ⊢
∮
dµk = λy.

∑
x∈S

µx · k(x; y)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Example

Weak Disintegration Problem (non-standard terminology)

Input: distributions µ : DΘ, ν : DX

Output: kernel k : Θ⇝ X such that: ν =
∮
dµk.

Such a weak disintegration of ν w.r.t. µ provides an ‘explanation’ of an observed
distribution ν ∈ DX in terms of a given distribution on parameters µ ∈ DΘ. I use the
term ‘explanation’ because it explains how the parameters transform into observations.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Example

Weak Disintegration Problem (non-standard terminology)

Input: distributions µ : DΘ, ν : DX

Output: kernel k : Θ⇝ X such that: ν =
∮
dµk.

Example disintegration

For n ∈ N, write Finn B {0, . . . , n− 1}. For countable X, write # B#X : DX.
Here is a disintegration of # ∈ D

(
(Fin 2)Fin (n+1)

)
w.r.t. # ∈ D (Fin 2):

k(x; f) B

{
fn = x : 1

otherwise: 0
Indeed:

(∮
d#k

)
f =

∑
b∈Fin 2

1︷︸︸︷
b ·k(b; f) = k(0; f) + k(1; f)

f : Fin (n+ 1) → Fin 2 function
so can take only one value: 0 or 1

↓
= 1 = #f

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Sub-type of probability distributions

Sub-types

Given type X and x : X ⊢ φ : Prop, take the sub-type and the coercion as follows:

{x : X|φ} ⊆ X y : {x : X|φ} ⊢ cast y B y : X

we lift values in X that satisfy φ to the sub-type:

Γ ⊢M : X Γ ⊢ φ [x 7→M]

Γ ⊢ liftM : {x : X|φ}
Γ ⊢M : X Γ ⊢ {φ}x 7→M

Γ ⊢ cast(liftM) = M

The axiom implies that liftM lifts M along cast. Moreover:

y : {x ∈ X|φ} ⊢ lift(cast y) = y y : {x ∈ X|φ} ⊢ φ [x 7→ cast y]

i.e., the lifting is unique and elements in the sub-type satisfy φ.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Sub-type of probability distributions

Magnitude and probability distributions

µ : DX ⊢ ∥µ∥ B Ce
µ
[X] : W PX B {µ ∈ DX|∥µ∥ = 1} I B [0,1] B {w ∈ W|w ≤ 1}

Event probability

µ : PX,E : BX ⊢ Pr
µ
[E] B lift

(
Ce
castµ

[E]

)
: I

Stochastic kernel
k : X ◦⇝ Y from X to Y : function X → PY .

NB: in the discrete model these distinctions and rules amount to pure pedantry. This
pedantry will pay off in the full model.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Lifting Dirac and Kock

Lemma
Dirac kernels δ− : X → DX lift along cast:

x : X ⊢ ∥δx∥ = Ce
δx

[X] = 1 so we can overload: X

DX

PXδ−

δ−

castC

Kock integrals of stochastic kernels by probability distributions lift along cast:
µ : PX, k : (PY)X ⊢ Ce∮(castµ)(dx) cast(k x) [Y] = 1

so we can overload:

(PX)× (PY)X PY

DY(DX)× (DY)X

∮

cast×(cast ◦) cast

∮
C

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Discrete Giry monad [Michéle Giry’82]

Proposition

The triple
(
D, δ−,

∮)
forms a monad over Set:

x : X, k : (DY)X ⊢
∮
dδxk = k x

µ : DX ⊢
∮
µ(dx)δx = µ

µ : DX, k : (DY)X , ℓ : (DZ)Y ⊢
∮ (∮

µ(dx)k x
)
(dy)ℓ y =

∮
µ(dx)

∮
k(x; dy)ℓ y

Corollary

The triple
(
P, δ−,

∮)
forms a monad over Set.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Weighted average

Lebesgue integral

Integration is the raison d’être for distributions:

µ : DX, f : WX ⊢
∫
dµf : W

In the discrete model:∫
dµf B

∑
x∈X

(µx) · (f x) B
∑

x∈suppµ

(µx) · (f x)

As usual, replace suppµ by any countable supporting set:

µ : DX, f : WX , S : PX,S supports µ ⊢
∫
dµf =

∑
x∈S

(µx) · (f x)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Weighted average

Expectation

To emphasise that some µ is a probability distribution, we will use the notation:

µ : PX, f : WX ⊢ Eµ [f] B

∫
d(castµ)f : W

When calculating, however, we will usually use
∫
and implicitly cast any probability

distribution to its corresponding distribution.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Booleans

Boolean type

The simplest kind of distinguishing outcomes:

B B {True,False}
Γ ⊢M : B Γ ⊢ N1 : X Γ ⊢ N2 : X

Γ ⊢ ifM thenN1 elseN2 : X

Iverson bracket
Lets us replace Boolean propositions with arithmetic expressions:

b : B ⊢ [b] B (if b then 1 else 0) : W

For example:
b : B, w, v : W ⊢ if b thenw else v = [b] · w+ (1− [b]) · w

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Simplest probabilistic model

Bernoulli kernel
Single trial succeeding with the given probability:

B : I ◦⇝ B Bp B λb.

{
b = True : p

b = False : 1− p
For example, for a payoff of 10 units if the trial succeeds then the expected payoff is:

E
b∼B

1
4
[[b] · 10] = 1

4 · 10 + (1− 1
4) · 0 = 10

4 + 0 = 5
2

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Events as functions

Proposition

Membership testing induces an isomorphism between events and Boolean propositions:

(∈) : BX
∼=→ BX

Its inverse sends each Boolean property to the set of outcomes satisfying it:

x : X ⊢M : B

{x ∈ X|M} : BX
{x ∈ X|φx} B {x ∈ X|φx = True}

Characteristic function
represents an event as weight functions: E : BX ⊢ [− ∈ E] : WX

By the above proposition, every (internal) {0, 1}-valued weight function is the
characteristic function of some event, namely, the inverse image of 1.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Measurement through integration

Lemma
We can replace event measurement by integration of characteristic functions:

µ : DX,E : BX ⊢ Ce
µ
[E] =

∫
µ(dx) [x ∈ E]

We can deduce properties for Ce [−] and Pr [−] from those of the Lebesgue integral.

Notation:
Γ ⊢ µ : DX Γ, x : X ⊢M : B

Γ ⊢ Ce
x∼µ

[M] B Ce
µ
[{x ∈ X|M}] : W

and similarly for Prx∼µ [M].

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Language of probability & distribution (recap)

X type of values/outcomes
DX type of distributions/measures over X

PX ⊆ DX sub-type of probability distributions over X

BX ⊆ PX type of events: subsets we wish to measure

W type of weights: values in [0,∞]∫
,E Lebesgue integration and the expectation operation

Type judgements describe well-formed values/outcomes of a given type, e.g.:

µ : DX,E : BX ⊢ Ce
µ
[E] : W

(measures weight Ceµ [E] of event E according to distribution µ)

Propositions describe properties of well-formed values/outcomes of a given type, e.g.:

y1, y2 : Y ⊢ y1
Y
= y2 : Prop µ : PX,E : BX ⊢ castPr

µ
[E] = Ce

µ
[E]

(probability of event according to probability distribution is its measure)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Lecture plan

course page

Lecture 1: discrete model (now)

▶ Motivation

▶ Language of probability and distribution

▶ Discrete model

▶ Simply-typed probability

▶ Dependently-typed probability

Lecture 2: the full model

ask questions on the
Scottish PL Institute
Zulip stream #qbs

▶ Borel sets and measurable spaces

▶ Quasi-Borel spaces

▶ Type structure & standard Borel spaces

▶ Integration & random variables

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

https://www.denotational.co.uk/tdpm-aarhus-course-2026/
https://spls.zulipchat.com/#narrow/channel/321584-qbs

Simply-typed foundations for probabilistic modelling

Compositional building blocks for modelling

▶ Affine combinations of distributions

▶ Product measures (⊗) : DX × DY → D(X × Y)

▶ Random elements and their laws (push-forward measure):
(λ (µ, α) .µα) : DΩ×XΩ → DX NB:

▶ Dirac kernel δ− : X → DX

▶ Kock integration∮
: DX × (DY)DX → DY

Standard vocabulary

▶ Joint and marginal distributions

▶ Independence

▶ Distribution/probability preservation and invariance

▶ Density and absolute continuity

▶ Almost certain/sure properties

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Simply-typed foundations for probabilistic modelling

Compositional building blocks for modelling

▶ Affine combinations of distributions

▶ Product measures (⊗) : DX × DY → D(X × Y)

▶ Random elements and their laws (push-forward measure):
(λ (µ, α) .µα) : DΩ×XΩ → DX NB:

▶ Dirac kernel δ− : X → DX

▶ Kock integration∮
: DX × (DY)DX → DY

Standard vocabulary

▶ Joint and marginal distributions

▶ Independence

▶ Distribution/probability preservation and invariance

▶ Density and absolute continuity

▶ Almost certain/sure properties

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Affine combinations of distributions: scaling

Scaling distributions

w : W, µ : DX ⊢ w · µ : DX
In the discrete model:

w · µ B λx.w · µx supp(w · µ) ⊆ suppµ
The function (·) : W× DX → DX is a monoid action for the monoid (W, (·), 1):

µ : DX ⊢ 1 · µ = µ w, v : W, µ : DX ⊢ w · (v · µ) = (w · v) · µ

Integration and measurement are homogeneous w.r.t. scaling:

w : W, µ : DX, k : (DY)X ⊢
∮
d(w · µ)k = w ·

∮
dµk

w : W, µ : DX, f : WX ⊢
∫
d(w · µ)f = w ·

∫
dµf

w : W, µ : DX,E : BX ⊢ Ce
w·µ

[f] = w · Ce
µ
[f]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Affine combinations of distributions: scaling

Normalisation
µ : DX, ∥µ∥ ≠ 0,∞ ⊢ µ

∥µ∥ B lift
(

1
∥µ∥ · µ

)
: PX

Indeed:
∥∥∥ µ
∥µ∥

∥∥∥ =
∥∥∥ 1
∥µ∥ · µ

∥∥∥
measurement is homogeneous

↓
= 1

∥µ∥ · ∥µ∥ = 1

Discrete uniform / categorical distribution

Random unbiased choice between finitely many options/categories:

S : Pfin (X) , S ̸= ∅ ⊢ US B
lift#S

∥lift#S∥ : PX
In the discrete model:

US = λx.

{
x ∈ S : 1

|S|
x /∈ S : 0

so: x : X ⊢ U{x} = δx.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Weights as distributions

Unit type

1 B {()}

Proposition

The following two functions are mutually inverse:

D1 W

∥−∥

(·δ())

Proof
Calculate: µ : D1 ⊢ µ 7→ µ () 7→ λ().µ () = µ and w : W ⊢ w 7→ λ().w 7→ w. ■

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Internalising Lebesgue integration

Proposition

We can recover Lebesgue integration from Kock integration:

DX ×WX DX × (D1)X

D1W

∫
id × (∼= ◦)

∮

∼=

=

Since measurement also reduced to Lebesgue integration, it usually suffices to prove
properties of Kock integration and derive them for Lebesgue integration and for
measurement.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Affine combinations of distributions: addition

Summation
µ← : (DX)I , I countable ⊢

∑
i∈I µi : DX

In the discrete model:∑
i∈I µi B λx.

∑
i∈I µi x supp

∑
i∈I µi =

⋃
i∈I suppµi

Affine and convex combinations
An affine combination is a countable sequence of weights w← : WI .
It is convex when

∑
i∈I wi = 1.

Bernoulli revisited
We can express the Bernoulli distribution as follows:

p : I ⊢ Bp = lift (p · δTrue + (1− p) · δFalse) : PB

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Affinity of integration and convexity of expectation

Theorem (Multi-linearity)

The Kock and Lebesgue integrals and measurement are affine in each argument:

µ← : (DX)I , w← : WI , k : X ⇝ Y ⊢
∮
d(
∑
i∈I

wi · µi)k =
∑
i∈I

wi ·
∮
dµik

µ : DX,w← : WI , k← : (X ⇝ B)I ⊢
∮
dµ(
∑
i∈I

wi · ki) =
∑
i∈I

wi ·
∮
dµki

µ← : (DX)I , w← : WI , φ : WX ⊢
∫
d(
∑
i∈I

wi · µi)φ =
∑
i∈I

wi ·
∫
dµiφ

µ : DX,w← : WI , φ← : (W
X)I ⊢

∫
dµ(
∑
i∈I

wi · φi) =
∑
i∈I

wi ·
∫
dµφi

µ← : (DX)I , w← : WI , E : BX ⊢ Ce∑
i∈I wi·µi

[E] =
∑
i∈I

wi · Ce
µi

[E]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Weight arithmetic

This theorem, a working horse in probability, has several important consequences:

Proposition

The isomorphism D1 ∼= W is a σ-semiring isomorphism:(
D1,

∑
, (·)
)
∼=
(

W,
∑

, (·)
)

and (·) : W× DX → DX makes each DX into a W-module:(∑
i∈I

wi

)
· µ =

∑
i∈I

(wi · µ) w ·
∑
i∈I

µi =
∑
i∈I

w · µi

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Convex combinations of probability distributions

Lemma
Convex combination lifts to probability distributions:

w← : WI , µ← : (PX)I , I countable,
∑
i∈I

wi = 1 ⊢∑
i∈I

wi · µi B lift
∑
i∈I

wi · (castµi) : PX

Proof

Calculate:

∥∥∥∥∥∑
i∈I

wi · (castµi)

∥∥∥∥∥ =
∑
i∈I

wi · ∥castµi∥ =
∑
i∈I

wi · 1 = 1 ■

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Convex combinations of probability distributions

Corollary (Multi-convexity)

Stochastic Kock integration, expectation and measurement are convex:

µ← : (DX)I , w← : WI , k : X ◦⇝ Y ,
∑
i∈I

wi = 1 ⊢
∮
d(
∑
i∈I

wi · µi)k =
∑
i∈I

wi ·
∮
dµik

µ : DX,w← : WI , k← : (X ◦⇝ B)I ,
∑
i∈I

wi = 1 ⊢
∮
dµ(
∑
i∈I

wi · ki) =
∑
i∈I

wi ·
∮
dµki

µ← : (DX)I , w← : WI , φ : WX ,
∑
i∈I

wi = 1 ⊢ E∑
i∈I wi·µi

[φ] =
∑
i∈I

wi · Eµi
[φ]

µ : DX,w← : WI , φ← : (W
X)I ,

∑
i∈I

wi = 1 ⊢ Eµ

[∑
i∈I

wi · φi

]
=
∑
i∈I

wi · Eµ [φi]

µ← : (DX)I , w← : WI , E : BX ,
∑
i∈I

wi = 1 ⊢ Pr∑
i∈I wi·µi

[E] =
∑
i∈I

wi · Pr
µi

[E]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Products

Product distribution

µ : DX, ν : DY ⊢ µ⊗ ν B

∮
µ(dx)

∮
ν(dy)δ(x,y) : D(X × Y)

In the discrete model:

µ⊗ ν = λ (x, y) .(µx) · (ν y) supp (µ⊗ ν) = (suppµ)× (supp ν)

Example: counting distribution on product space

S : Pfin (X) , T : Pfin (Y) ⊢ #S×T
D(X×Y)

= #S ⊗#T

Indeed: supp (#S ⊗#T) = S × T = supp#S×T and for (x, y) ∈ S × T :

(#S ⊗#T) (x, y) = 1 · 1 = 1 = #S×T (x, y)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Products

Notation:
Γ ⊢M : D(X × Y) Γ, x : X, y : Y ⊢ K : DZ

Γ ⊢
∯

M(dx, dy)K B

∮
dM(λ (x, y) .K) : DZ

Theorem (Fubini-Tonelli)

We can integrate products in any order:

µ : DX, ν : DY , k : (DZ)X×Y ⊢∮
µ(dx)

∮
ν(dy)k (x, y) =

∯
(µ⊗ ν)(dx, dy)k (x, y) =

∮
ν(dy)

∮
µ(dx)k (x, y)

µ : DX, ν : DY , φ : WX×Y ⊢∫
µ(dx)

∫
ν(dy)φ (x, y) =

∬
(µ⊗ ν)(dx,dy)φ (x, y) =

∫
ν(dy)

∫
µ(dx)φ (x, y)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Applying Fubini-Tonelli

Theorem (Rule of Product)

We can factor out products:

µ : DX, f : WX , ν : DY , g : WY ⊢
∬
(µ⊗ ν)(dx, dy)fx · gy =

(∫
dµf

)
·
(∫

dνg

)
µ : DX,E : BX , ν : DY , F : BY ⊢ Ce

µ⊗ν
[E × F] = Ce

µ
[E] · Ce

ν
[F]

Theorem
The product lifts to probability distributions:

µ : PX, ν : PY ⊢ (µ⊗ ν) B lift(castµ⊗ cast ν) : P(X × Y)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Products

Binomial distribution
the number of successful outcomes of n independent Bernoulli trials:

Bn : I ◦⇝ P(Fin (1 + n)) B0p B δ0 : P(Fin 1)

B1+np B

∯
(Bnp⊗Bp)(dc,db) (if b then δ1+c else δc) : P(Fin (2 + n))

We can prove by induction on n, using Fubini-Tonelli and the Iverson bracket that:

p : I, k : Fin (1 + n) ⊢ Pr
c∼Bnp

[c = k] =

(
n

k

)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Push-forward distributions

Random element
in X any (internal) function:

µ : DΩ ⊢ α : Ω→ X

Law
of a random element is the distribution:

µ : DΩ, α : XΩ ⊢ µα B

∮
µ(dω)δαω : DX

Example

Represent outcomes of die roll by D6 B {1, 2, . . . , 6}, and two rolls by D6× D6.
The sum of the rolls is a random element:

(+) : D6× D6→ N

The law of the distribution # ⊗# counts the number of configurations in which the
two rolls sum to a given number, e.g.: (# ⊗#)(+) : 1 7→ 0, 2 7→ 1.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Push-forward distributions

Theorem (Law of the Unconcious Statistician)

Formulae for reparameterising integration and measurement:

µ : Ω, α : XΩ, k : X ⇝ Y ⊢
∮
dµαk =

∮
dµ(k ◦ α)

µ : Ω, α : XΩ, f : WX ⊢
∫
dµαf =

∫
dµ(f ◦ α)

µ : Ω, α : XΩ, E : BX ⊢ Ce
µα

[E] = Ce
µ

[
α−1 [E]

]
= Ce

ω∼µ
[αω ∈ E]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Simply-typed foundations for probabilistic modelling

Compositional building blocks for modelling

▶ Affine combinations of distributions

▶ Product measures (⊗) : DX × DY → D(X × Y)

▶ Random elements and their laws (push-forward measure):
(λ (µ, α) .µα) : DΩ×XΩ → DX NB:

▶ Dirac kernel δ− : X → DX

▶ Kock integration∮
: DX × (DY)DX → DY

Standard vocabulary

▶ Joint and marginal distributions

▶ Independence

▶ Distribution/probability preservation and invariance

▶ Density and absolute continuity

▶ Almost certain/sure properties

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Standard vocabulary: concepts concerning products

Let πi :
∏

i∈I Xi → Xi be the i-th projection.

Joint distribution: µ : D(X × Y), µ : D
(∏

i∈I Xi

)
Marginal distribution: the law of a projection:

µ : D

(∏
i∈I

Xi

)
⊢ µπi

: DXi

Sometimes refers to any law of a r.e..

Marginalisation: the action of calculating a marginal distribution by integrating all
other components.

Exercise
µ : PX, ν : DX ⊢ (µ⊗ ν)π2 = ν

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Independence

Pairing random elements

α : XΩ, β : Y Ω ⊢ λω. (αω, β ω) : (X × Y)Ω

Independent random elements

The joint law is the product of the marginals:

µ : DΩ, α : XΩ, β : Y Ω ⊢ α⊥
µ
β B

(
µ(α,β)

D(X×Y)
= µα ⊗ µβ

)
More generally, for finite I:

µ : DΩ, α← : (X
Ω)I ⊢ ⊥i

µ
αi B

(
µ(αi)i

D(
∏

i Xi)
=

⊗
i∈I

µαi

)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Independence

Example [Durett]

Model 3 independent coin tosses:

Toss B {Head,Tail} Ω B Toss3 µ B UToss ⊗UToss ⊗UToss : PΩ

The outcome of the ith coin toss is the random element πi : Ω→ Toss.
Consider the Boolean proposition in which the ith and jth tosses (i ̸= j) agree:

Sameij B λω.πiω = πjω : Ω→ B

Calculate:

Pr
µ
[Same12]

LOTUS

↓
= Pr

(x,y)∼µ(π1,π2)

[x = y]

marginalisation

↓
= Pr

(x,y)∼U⊗U
[x = y]

Fubini

↓
=

∫
U(dx) Pr

y∼U
[x = y]

= 1
2 · Pry∼U

[Head = y] + 1
2 · Pry∼U

[Tail = y] = 1
4 + 1

4 = 1
2

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Independence

Example [Durett]

Model 3 independent coin tosses:

Toss B {Head,Tail} Ω B Toss3 µ B UToss ⊗UToss ⊗UToss : PΩ

The outcome of the ith coin toss is the random element πi : Ω→ Toss.
Consider the Boolean proposition in which the ith and jth tosses (i ̸= j) agree:

Sameij B λω.πiω = πjω : Ω→ B

Therefore µSame12 = UB and similarly µSameij = UB for i ̸= j.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Independence

π1, Same12, and Same13 determine π2, π3, so:

Pr
ω∼µ

[Same12ω = True, Same13ω = True]

Fubini-Tonelli

↓
=

∫
UToss(db1) Pr

(b2,b3)∼(U⊗U)
[Same12(b1, b2, b3) = True,Same13(b1, b2, b3) = True]

= 1
2 Pr
(b2,b3)∼(U⊗U)

[Same12(Head, b2, b3) = True, Same13(Head, b2, b3) = True]

+ 1
2 Pr
(b2,b3)∼(U⊗U)

[Same12(Tail, b2, b3) = True,Same13(Tail, b2, b3) = True]

= 1
2 ·

1
2 ·

1
2 + 1

2 ·
1
2 ·

1
2 = 1

4

and similarly we get 1
4 in all other cases.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Independence

Example [Durett]

Model 3 independent coin tosses:

Toss B {Head,Tail} Ω B Toss3 µ B UToss ⊗UToss ⊗UToss : PΩ

The outcome of the ith coin toss is the random element πi : Ω→ Toss.
Consider the Boolean proposition in which the ith and jth tosses (i ̸= j) agree:

Sameij B λω.πiω = πjω : Ω→ B

Therefore µSame12 = UB and similarly µSameij = UB for i ̸= j. So:

µ(Same12,Same13) = UB×B = UB ⊗UB = µSame12 ⊗ µSame13

So Same12⊥
µ
Same13 even though their values depend on the outcome of the first toss.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Distribution preservation

Distribution space (Ω, µ)

A type Ω equipped with a distribution µ : DΩ. Define probability space analogously.

Distribution preserving function

f : (Ω1, µ1)→ (Ω2, µ2) is a function whose is the co domain distribution:

f : Ω1 → Ω2 (µ1)f = µ2

µ : DX is invariant under f : X → X when f : (X,µ)→ (X,µ) is dist. preserving.

Example

Consider the swapping function: swap B (λ (x, y) . (y, x)) : X × Y → Y ×X. Then,
for each µ : DX, ν : DY , swapping is distribution preserving function:

swap : (X × Y , µ⊗ ν)→ (Y ×X, ν ⊗ µ)
swap is invariant in the case X = Y and µ = ν.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Density and scaling

Density

over X is any weight function f : X → W.

Density scaling

We can scale a distribution by a density:

f : WX , µ : DX ⊢ f ⊙ µ B

∮
µ(dx)(f, x) · δx : DX

Scaling does not lift to probability distributions: ∥f ⊙ µ∥ ≠ 1 even if ∥µ∥ = 1.

Warning!

The types of distributions and densities over X in the discrete model are close, but
still different. They coincide on countable types, so people often confused them.
Types help us keep them separate.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Density and scaling

Density

over X is any weight function f : X → W.

Density scaling

We can scale a distribution by a density:

f : WX , µ : DX ⊢ f ⊙ µ B

∮
µ(dx)(f, x) · δx : DX

Scaling does not lift to probability distributions: ∥f ⊙ µ∥ ≠ 1 even if ∥µ∥ = 1.

Warning!

The types of distributions and densities over X in the discrete model are close, but
still different. They coincide on countable types, so people often confused them.
Types help us keep them separate.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Density and absolute continuity

Having density

This concept has several names in the literature:

µ, ν : DX, f : WX ⊢
(
f =

dµ

dν

)
B (µ = f ⊙ ν) : Prop

▶ f is the density of µ w.r.t. ν

▶ f is a Radon-Nikodym derivative of µ w.r.t. ν.

Absolute continuity

µ is absolutely continuous w.r.t. ν when µ has a density w.r.t. ν:

µ, ν : DX ⊢ (µ≪ ν) B ∃f : WX .f =
dµ

dν
: Prop

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Density and absolute continuity

Example

The uniform distribution is absolutely continuous w.r.t. the counting measure over
the same support. Indeed, it has these two densities:

S : Pfin (X) ⊢
(

λx. 1
|S|

)
,

(
λx.

{
x ∈ S : 1

|S|
x /∈ S : 0

)
=

dUS

d#S

These two densities are different, but they agree on the support, motivating the
following concept.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Almost certain/sure properties

Almost certain event
is one we can assert without changing the distribution:

Γ ⊢ µ : DX Γ, x : X ⊢M : B

Γ ⊢ µ(dx) almost certainly M B [M]⊙ µ = µ : Prop

For probabilities we define:

Γ ⊢ µ : PX Γ, x : X ⊢M : B

Γ ⊢ µ(dx) almost surely M B (castµ)(dx) almost certainly M : Prop

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Existence and almost-sure uniqueness of densities

Theorem (Radon-Nikodym)

For probability distributions, we characterise absolute continuity as follows:

µ, ν : PX ⊢ (µ≪ ν) ⇐⇒ ∀E : BX .Pr
ν
[E] = 0 =⇒ Pr

µ
[E] = 0

In that case, if f, g = dµ
dν then ν(dx) almost surely f x = g x.

In the discrete model, this characterisation amounts to suppµ ⊆ supp ν.

Example

For all countable X, we have:

∀µ : DX.µ≪#X

Indeed, apply the Radon-Nikodym theorem, since supp# = X.
Constructively, direct calculation shows: (λx.µ x) = dµ

d# .

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Simply-typed foundations for probabilistic modelling

Compositional building blocks for modelling

▶ Affine combinations of distributions

▶ Product measures (⊗) : DX × DY → D(X × Y)

▶ Random elements and their laws (push-forward measure):
(λ (µ, α) .µα) : DΩ×XΩ → DX NB:

▶ Dirac kernel δ− : X → DX

▶ Kock integration∮
: DX × (DY)DX → DY

Standard vocabulary

▶ Joint and marginal distributions

▶ Independence

▶ Distribution/probability preservation and invariance

▶ Density and absolute continuity

▶ Almost certain/sure properties

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Lecture plan

course page

Lecture 1: discrete model (now)

▶ Motivation

▶ Language of probability and distribution

▶ Discrete model

▶ Simply-typed probability

▶ Dependently-typed probability

Lecture 2: the full model

ask questions on the
Scottish PL Institute
Zulip stream #qbs

▶ Borel sets and measurable spaces

▶ Quasi-Borel spaces

▶ Type structure & standard Borel spaces

▶ Integration & random variables

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

https://www.denotational.co.uk/tdpm-aarhus-course-2026/
https://spls.zulipchat.com/#narrow/channel/321584-qbs

Type dependencies

Example: Binomial kernels

We’ve defined, for every n ∈ N, the binomial kernel:

⊢ Bn : I ◦⇝ Fin (1 + n)

We will now look at dependent-type structure which allows us to view these as one
kernel internally:

n : N ⊢ Bn : I ◦⇝ Fin (1 + n)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Family model

Family over an indexing set I

consists of a seqeuence X ←= (Xi)i∈I of sets.
We call each set Xi the fibre over i.

Family F

a pair F = (I,X ←) consisting of (indexing) set I and a family X ← over it.
Notation: F = I ⊢ X ←

= i : I ⊢ Xi.

Example

The family n : N ⊢ Finn has N as the indexing set. The fibre over n ∈ N is:

Finn B {0, 1, . . . , n− 1}

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Family model

Family over an indexing set I

consists of a seqeuence X ←= (Xi)i∈I of sets.
We call each set Xi the fibre over i.

Family F

a pair F = (I,X ←) consisting of (indexing) set I and a family X ← over it.
Notation: F = I ⊢ X ←

= i : I ⊢ Xi.

Family map

(θ, f ←) : (I ⊢ X ←)→ (J ⊢ Y ←) is a pair of a function between the indexing sets and a
sequence of functions between the corresponding fibres:

θ : I → J (f i : Xi → Y θ i)i∈I

Notation: θ ⊢ f ←. We won’t use these maps explicitly, but they are the foundation.
Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Terms in context

Dependent elements i : I ⊢M : X i

in family i : I ⊢ Xi are I-indexed sequences of elements from the corresponding fibres:

(M ∈ Xi)i∈I

Example

We have the elements:
n : N ⊢ 0, . . . , n− 1 : Finn

Subsumption

Every simple type becomes a family by ignoring the dependency through the constant
family, e.g., i : I ⊢ N and i : I ⊢ 42 : N.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Simple functions

Fibred exponential

of two families over the same indexing set i : I ⊢ Xi, Y i is the family:

i : I ⊢ Xi → Y iFamily of distributions

over a family i : I ⊢ Xi is the family:

i : I ⊢ DXi

Its sub-family of fibred probability distributions:

i : I ⊢ PXi

Both have a Dirac distribution:

i : I ⊢ δ− : Xi → DXi i : I ⊢ δ− : Xi → PXi

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Extension and dependent pairs

Extension
of indexing set I by a variable of the family i : I ⊢ Xi is the (indexing) set:

∐
i∈I

Xi B
⋃
i∈I
{i} ×Xi =

{
(i, x) ∈ I ×

⋃
i∈I

Xi

∣∣∣∣∣x ∈ Xi

}

Notation: (i : I, x : Xi) B
∐

i∈I Xi and we’ll often write i, x instead of (i, x).

Dependent pairs

i : I ⊢ Xi i : I, x : Xi ⊢ Y i,x

i : I ⊢ (x : Xi)× (Y i,x) B
∐
x∈Xi

Y i,x

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Functions and kernels

Dependent functions

we identify a function f with a tuple (f x)x as usual:

i : I ⊢ Xi i : I, x : Xi ⊢ Y i,x

i : I ⊢ ((x : X)→ Y i,x) B
∏
x∈X

Y i,x

Dependent kernels i : I ⊢ k : (x : X i)⇝ Y i,x

are dependent elements:
i : I ⊢ k : (x : Xi)→ DY i,x

Dependent stochastic kernels i : I ⊢ k : (x : Xi) ◦⇝ Y i,x are similarly:

i : I ⊢ k : (x : Xi)→ PY i,x

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Integration

Dependent Kock integral

i : I, µ : DXi, k : (x : Xi)⇝ Y i,x ⊢
∮
dµk : DY i,x

and in the discrete model we define it for i, µ, k as in the simply-typed case:

(

∮
dµk)y B

∑
x∈Xi

µx · k(x; y) : W

Through the identification W ∼= D1 and characteristic functions, we reduce dependent
Lebesgue integration and measurement to dependent Kock integration:

i : I, µ : DXi, f : (x : Xi)→ W ⊢
∫
dµf : W i : I, µ : DXi, E : BXi ⊢ Ce

µ
[E] : W

∫
dµf =

∑
x∈X µx · f x Ceµ [E] =

∑
x∈E µx

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Random variables

Let R B [−∞,∞] be the extended real line.

Signed and unsigned random variable

in a probability space (Ω, µ) are random elements α : Ω→ R and α : Ω→ W.
The positive and negative parts are unsigned random variables −± : RΩ → WΩ:

α+ B λω.max(αω, 0) = [α ≥ 0] · |α| α− B λω.−min(αω, 0) = [α ≤ 0] · |α|

An unsigned r.v. α is Lebesgue integrable when its Lebesgue integral is finite:∫
dµα <∞.

For a (signed) r.v. α, when either α+ or α− is Lebesgue integrable, we define:

µ : DX,α : RX ,

∫
dµα+,

∫
dµα− <∞ ⊢

∫
dµα B

∫
dµα+ −

∫
µα−

A signed variable is Lebesgue integrable when both its parts are Lebesgue integrable.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Random variable spaces

Lebesgue integrability is a Boolean property:

µ : DX,α : X → R ⊢ α integrableB

∫
dµα+ <∞∧

∫
dµα− <∞ : B

Lebesgue spaces ensemble

is the family:

i : I, p : [1,∞), µ : PXi ⊢ Lp(Xi, µ) B
{
α : Xi → R

∣∣αp integrable
}

Every fibre has a vector space structure and a norm (almost a Banach space!):

i : I, p : [1,∞), µ : PXi, α : Lp(Xi, µ) ⊢ ∥α∥ p B p

√
Eµ [|α| p] : W

and the fibre 2 has an inner product (almost a Hilbert space!):

i : I, µ : PXi, α, β : L2(Xi, µ) ⊢ (α, β) B
√

Eµ [α · β] : W

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Conditioning á la Kolmogorov

Situation:

▶ Statistical model µ : DΩ
(voters in the next election)

▶ Perfect statistic α : Ω→ R
(expected winning candidate)

▶ Observation H : Ω→ X
(poll voting intention)

Conditional expectation of α along H w.r.t µ

Statistic β : X → R that ‘best’ approximates H ◦ α staistically. Halmos and Doob’s
definition: any measurement we make of β agrees with measurement of α:

µ : DΩ, H : Ω→ X,α : L1(Ω, µ), β : L1(X,µH) ⊢(
β = E

µ
[α|H = −]

)
B

(
∀φ : L1(X,µH).

∫
dµHβ · φ =

∫
dµα · (φ ◦H)

)
: Prop

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Conditioning á la Kolmogorov

Theorem (Kolmogorov)

Every random variable has a conditional expectation:

µ : DΩ, H : Ω→ X,α : L1(Ω, µ) ⊢ ∃β : L1(X,µH).β = E
µ
[α|H = −]

Therefore:

Corollary (Internal conditional expectation)

In the discrete model we have a dependent function:

E− [−|− = −] :

(µ : DΩ)→ (H : Ω→ X)→ (α : L1(Ω, µ))→
{
β : L1(X,µH)

∣∣∣∣β = E
µ
[α|H = −]

}

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Conditioning á la Kolmogorov

Conditional probability

of event is a conditional expectation of its characteristic function:

µ : PΩ, H : Ω→ X,E : BΩ, β : L1(X,µH) ⊢(
β = Pr

µ
[E|H = −]

)
B

(
β = E

ω∼µ
[ω ∈ E|H = −]

)
: Prop

Regular conditional probability

a kernel that agrees with the conditional expectation of the characteristic functions:

µ : PΩ, H : Ω→ X, k : X ◦⇝ Ω ⊢(
k = Pr

µ
[−|H = −]

)
B

(
∀E ∈ BΩ.k(−;E) = E

ω∼µ
[ω ∈ E|H = −]

)
: Prop

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Conditioning via disintegration

Kolmogorov’s theorem does not ensure the existence of a regular conditional
probability, although the constructive, discrete, definition does.

Disintegration Problem (warning: conflicting terminologies in literature)

Input: probability distribution µ : PΩ, measurable map H : Ω→ Θ
induce law ν B µH : PΘ

Output: probability kernel k : Θ ◦⇝ Ω such that: µ =
∮
dνk.

We call k a disintegration of µ along H.

Proposition

Consider a probability kernel k : Θ ◦⇝ Ω. TFAE:

▶ k is a disintegration of µ along H : Ω→ Θ;

▶ k is a regular conditional probability kernel of µ conditioned on H.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Conditioning via disintegration

Fibred disintegration of µ : P (
∐

ΘΩ) (non-standard terminology and formulation)

a partial dependent kernel k : (θ : Θ) ◦⇝ Ω⊥, defined µdep-a.s., that disintegrates µ
along the first projection dep : (

∐
ΘΩ)→ Θ:

µ : P
(∐

Θ
Ω
)
,k : Θ ◦⇝ Ω⊥ ⊢ k disintegrates fibres of µ B

µdep(Dom (k)) = 1, µ =

∮
dµdepk : Prop

In the discrete model we have an internal disintegration:

−† :
(
µ : P

(∐
Θ
Ω
))
→ {k : (θ : Θ) ◦⇝ Ω⊥|k disintegrates µ along dep}

Dom
(
µ†
)
B
{
θ
∣∣µdepθ > 0

}
µ† B λθ. 1

µdepθ
⊙ µ|dep−1[θ]

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Bayes’s Theorem (adapted from Williams)

Let:
▶ λ : P(X ×Θ) be a joint probability distribution.

▶ µ : DX, ν : DΘ be distributions such that λ≪ µ⊗ ν X
αBπ1←−−− X ×Θ

HBπ2−−−−→ Θ
▶ wα,H = dλ

dµ⊗ν : X ×Θ→ W a Radon-Nikodym derivative

Observation 1
▶ wα B λx.

∫
ν(dθ)wα,H(x, θ) : X → W then: wα = dλα

dµ

▶ wH B λθ.
∫
µ(dx)wα,H(x, θ) : Θ→ W then: wH = dλH

dν

Observation 2

Let: wα(− | H = −) : X ×Θ→ W wα(x | H = θ) B

{
wHθ > 0 :

wα,H(x,θ)
wHθ

otherwise: 0

λα|H=− : Θ ◦⇝ X λα|H=θ B λα(− | H = θ)⊙ ν. Then:

λα|H=− = Pr
λ
[−|H = −] (Bayes’s formula)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Lecture plan

course page

Lecture 1: discrete model
▶ Motivation

▶ Language of probability and distribution

▶ Discrete model

▶ Simply-typed probability

▶ Dependently-typed probability

Lecture 2: the full model (now)

ask questions on the
Scottish PL Institute
Zulip stream #qbs

▶ Borel sets and measurable spaces

▶ Quasi-Borel spaces

▶ Type structure & standard Borel spaces

▶ Integration & random variables

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

https://www.denotational.co.uk/tdpm-aarhus-course-2026/
https://spls.zulipchat.com/#narrow/channel/321584-qbs

From histograms to measures

The discrete model expresses
histograms only.

Also want continuous distributions:

▶ lengths

▶ areas

▶ volumes

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Continuous caveat

Theorem (Vitali 1905)

There is no reasonable generalisation of ‘length’ that measures all subsets of the real
line—there is no function λ : PR→ W satisfying:

λ[a, b] = (b− a) λ(s+ [E]) = λE λ (
⊎∞

i=0En) =
∑∞

i=0 λEn

(generalise length) (translation invariance) (σ-additivity)

Takeaway

BR B PR as in the discrete model excludes length, area, volume as distributions.
=⇒ need a different model

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Workaround

Only measure well-behaved subsets:

Borel subsets BR ⊆ PR
smallest σ-field containing all open intervals:

∅ ∈ BR

E ∈ BR

E∁ ∈ BR

E− ∈ BN
R⋃

n∈N

En ∈ BR

a, b ∈ R

(a,b) ∈ BR

(empty set) (complements) (countable unions) (intervals)

Examples

▶ Countable discrete subsets are Borel:

{r} =
⋂

ε∈Q>0

(r − ε, r + ε) ∈ BR , I countable =⇒ I =
⋃
i∈I
{i}

▶ Any interval is Borel, e.g.: [a,b) = (a,b) ∪ {a}
▶ See exercises on the Borel set hierarchy for a constructive non-example.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Measure theory: generalise the worst-case scenario

;-)

Measurable space M = (M,BM)

set of points a ∈M equipped with a σ-field BM ⊆ PM :

∅ ∈ BR

E ∈ BR

E∁ ∈ BR

E− ∈ BN
R⋃

n∈N

En ∈ BR

(empty set) (complements) (countable unions)
Examples

▶ Discrete spaces: I
Meas

B (I,PI)

▶ Sub-spaces:
S ⊆M

SM B (S, [BM] ∩ S)
i.e., BSM

B {E ∩ S|E ∈ BM}, e.g., [0,∞) ↪→ R

▶ Products: B∏
i∈I Mi

B σ
⋃
i∈I

π−1
i [BMi] = σ

×i∈I Ei

∣∣∣∣∣∣
E− ∈

∏
i∈I BMi ,

∃J ⊆countable I.
∀j /∈ J.Ej = M i

, e.g.: Rn

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Measure theory

Borel measurable function f : M → K

function sending points to points and measurable subsets to measurable subsets:

f : M → K BM ∋ f−1 [E] ⇐= E ∈ BK

Examples

▶ (+), (·) : R2 → R

▶ |−| , sin : R→ R

▶ any continuous function Rn → R

▶ any function out of a discrete space:
f : I →M

f : I →M

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Measure theory

Category Meas

Objects M : measurable spaces

Arrows f : M → K: Borel measurable functions

id B (λx.x) : M →M

f : M → K g : K → L

g ◦ f : (λx.g(f x)) : M →M

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Measure theory

Categorical structure

Products, coproducts/disjoint unions, subspaces, projective and injective limits /
categorical limits and colimits are all fine.

Theorem (Aumann’61)

There are no measurable spaces of Borel subsets nor of measurable functions over R.
In detail, there are no σ-fields BBR and BR→R such that, letting BR and R→ R be the
corresponding measurable spaces, the following functions are measurable:

▶ Membership testing:

(∈) B

(
λr.E.

{
r ∈ E : True

otherwise: False

)
: R× BR → {True,False}

▶ Evaluation: eval B (λ (f, r) .f r) : (R→ R)× R→ R.

As a consequence, Meas is not Cartesian closed.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Aumann’s Theorem: proof preliminaries

Recall the Borel hierarchy over a family of subsets U ⊆ PX, defined by transfinite
induction on ω1 + 1, the successor of the first uncountable ordinal:

ΣU
α ,Π

U
α ,∆

U
α ⊆ PX (α ∈ ω1)

ΣU
1 B U

ΣU
α+1 B

⋃
i∈I

Ai

∣∣∣∣∣∣I ⊆ N, A←∈ U ∪
⋃
β≤α

ΠU
β

 (1 ≤ α ∈ ω1)

ΣU
γ B

⋃
β<γ

ΣU
β (1 ≤ γ a limit ordinal in ω1)

ΠU
α B

[
ΣU

α

]∁
B
{
A∁
∣∣∣A ∈ ΣU

α

}
∆U

α B ΣU
α ∩∆U

α

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Aumann’s Theorem: proof preliminaries

The Borel hierarchy looks like this in general:

ΣU
1

∆U
1

ΠU
1

ΣU
2

∆U
2

ΠU
2

ΣU
3

∆U
3

ΠU
3

ΣU
ω

∆U
ω

ΠU
ω

ΣU
ω+1

∆U
ω+1

ΠU
ω+1

ΣU
ω1

∆U
ω1

ΠU
ω1

· · · · · · σ(U)
⊆
⊆

⊆

⊆

⊆
⊆

⊆

⊆

⊆
⊆

⊆

⊆

⊆
⊆

⊆

⊆

⊆
⊆

⊆

⊆

=

=

=

=
⊆ ⊆

For U B {(a,b)|a, b ∈ R}, the hierarchy does not stabilise before ω1:

ΣU
1

∆U
1

ΠU
1

ΣU
2

∆U
2

ΠU
2

ΣU
3

∆U
3

ΠU
3

ΣU
ω

∆U
ω

ΠU
ω

ΣU
ω+1

∆U
ω+1

ΠU
ω+1

ΣU
ω1

∆U
ω1

ΠU
ω1

· · · · · · σ(U) = BR

⊂
⊂

⊂

⊂

⊂
⊂

⊂

⊂

⊂
⊂

⊂

⊂

⊂
⊂

⊂

⊂

⊂
⊂

⊂

⊂

=

=

=

=
⊂ ⊂

Rank of E ∈ σU
first step in which it appears: RankE B min

{
α < ω1

∣∣A ∈∆U
α

}
.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Aumann’s Theorem

Proof
Assume to the contrary there was some σ-field providing a measurable space of Borel
subsets BR such that membership testing is measurable:

(∈) : R× BR → {True,False} NB: BR×BR = σ ([BR]× [BBR])

Let α B Rank (∈)−1 [True] < ω1, and find E ∈ BR with RankE > α. Then:

α < RankE = Rank
(
((∈) ◦ (−, E))−1 [True]

)
= Rank

(
(−, E)−1

(
(∈)−1 [True]

))
≤ Rank

(
(∈)−1 [True]

)
= α

So α < α, a contradiction, and the postulated σ-field cannot exist. A similar proof
replacing E with its characteristic function proves eval cannot be measurable. ■

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Some higher-order structure in Meas

Sequences

By generalities, (I →M) =
∏

i∈I M . For countable I, we use I →M for sequences.

Example

A sequence a− : N→ R is Cauchy when ∀ε > 0.∃N ∈ N.∀m,n > N. |an − an| < ε.
We can define the Cauchy property through quantification over countable sets:

Cauchy ∈ BN→R Cauchy B
⋂

ε∈Q>0

⋃
N∈N

⋂
m,n∈N

{a− ∈ N→ R||an − am| < ε}

measurability through type-checking

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Ohad Kammar <ohad.kammar@ed.ac.uk> Type-Driven Probabilistic Modelling

handwritten-slides/popl24-tutorial-fest-slide-83.pdf

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Ohad Kammar <ohad.kammar@ed.ac.uk> Type-Driven Probabilistic Modelling

handwritten-slides/popl24-tutorial-fest-slide-84.pdf

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Ohad Kammar <ohad.kammar@ed.ac.uk> Type-Driven Probabilistic Modelling

handwritten-slides/popl24-tutorial-fest-slide-85.pdf

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Ohad Kammar <ohad.kammar@ed.ac.uk> Type-Driven Probabilistic Modelling

handwritten-slides/popl24-tutorial-fest-slide-86.pdf

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Ohad Kammar <ohad.kammar@ed.ac.uk> Type-Driven Probabilistic Modelling

handwritten-slides/popl24-tutorial-fest-slide-87.pdf

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

Ohad Kammar <ohad.kammar@ed.ac.uk> Type-Driven Probabilistic Modelling

handwritten-slides/popl24-tutorial-fest-slide-88.pdf

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling

