Foundations for

Type-Driven Probabilistic Modelling

Ohad Kammar
University of Edinburgh

Logic and Semantics Group
3 February, 2026
Department of Computer Science
University of Aarhus

ntormancslfes

Laboratory for Foundations ~ [0#@8 THE ROYAL The - Facebook Research
of Compter Science - ) ASAGSIRILS] =  @]& SOCIETY  palnarind NICSC

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling



Computational golden era

logic-rich & type-rich computation

statistical computation
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Computational golden era

logic-rich & type-rich computation
> Expressive type systems: Haskell, OCaml, Rust, Agda, Idris
» Mechanised mathematics: Agda, Rocq, Isabelle/HOL, Lean

> Verification: SMT-powered real-world systems

statistical computation
Generative modelling with efficient inference: Monte-Carlo simulation or
gradient-based optimisation
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This course

Typed interface to probability/statistics
Every concept has:

> a type

P associated operations

> properties in terms of these operations.

course page

Two implementations/models

familiar maths supports discrete
introductory and
continuous distributions
same language
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Motivation: why foundations?

countably supported distributions
good type-structure
(this course)

s-finite distributions
over standard Borel spaces
S
Lebesgue measure over R"

Takeaway

Use types to abstract away from the model

standard, established
poor type-structure

new, experimental
rich type-structure
(this course)
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Motivation: why types?

» spotlights meaningful operations
J : (Distribution X') x (RandomVariable X') — [0,00]

» document intent:
probability (Distribution ') vs. density (\X — [0,00]) vs. random variable
P> succinctness: omit and elaborate details

> especially formal types, allow using theory correctly without fully understanding it
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Lecture plan

Lecture 1: discrete model (now)

» Language of probability and distribution
» Discrete model

» Simply-typed probability

» Dependently-typed probability

Lecture 2: the full model

» Borel sets and measurable spaces

» Quasi-Borel spaces _
ask questions on the

Scottish PL Institute
» Integration & random variables Zulip stream #qbs

» Type structure & standard Borel spaces
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Language of probability & distribution

type (=space) of /
DX type of / over
PX C DX sub-type of over
By CPX type of : subsets we wish to measure
W type of : values in [0,00]

|',E Lebesgue integration and the expectation operation
Type judgements describe well-formed values/outcomes of a given type, e.g.:

:DX,E: By FCelL]: W

(measures weight Ce,, [/] of event /- according to distribution /)

Propositions describe properties of well-formed values/outcomes of a given type, e.g.:
Fyi =12 : Prop :PX,E By FPr[E] =CelE]

)

(probability of event according to probability distribution is its measure)
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Axioms for events and distributions

Empty event

Empty events weight zero
: DX F Celf]

Il
o
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Axioms for events and distributions

Boolean Sub-algebra of Events

By LB By ENF By soalsor P By X, EUF:B
Disjoint additivity
W w0 W ,C': By, DX F Ce[E] = Ce[E N ]+Co[ N C}
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Axioms for events and distributions

Boolean Sub-algebra of Events

By LB By ENF By soalsor P By X, EUF:B
Disjoint additivity

W w0 W ,C': By, DX F Ce[E] = Ce[E N ]+Co[ N C}
Exercise

Derive ‘axiomatically’ that:

» measurement is

:DX,E C FFCelE] <Cel[F]

> the principle:

yE,F i Bx FCe[EUF]+ Ce[EUF] =Ce|E] 4+ Ce[F]
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Axioms for events and distributions

Consider posets:
wi=(NS) (B (W,<)

in a poset P = (P, <):

PYi={pe PMpg < p1 <0}

Chain-closure of events and weights
(B, O U : B -0 (W, <)% k= sup W

Scott-continuity of measurement
i (Bx, O, DX FCe, U ] = sup,, Ce,, [E,)]
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Axiom for probability

Probability distributions have total mass one
PX = {1 € DX|Ce,[X] =1} :PX Fcastp:D
i.e., if we define:

| :=0,1] :PX,E:By FPr[E]:= Ce [E]:|

cast

then:
PXEFPriX]=1
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Integration

Lebesgue integration w.r.t. a distribution

DX, [ W I—Jl (do) f(2) s W

(NB: We succinctly write W for the type of functions X' — W.)

Expectation w.r.t. a probability distribution
cPXL WS R Ee [f( )]::J(cast Vo) f(r) W

We'll use variations on this notation, e.g.:

[t | a [ sputan et
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Summary

Have: Language and (some) axioms

Want: Model
Today: model
Next week: model
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Lecture plan

Lecture 1: discrete model (now)

» Discrete model

Lecture 2: the full model

ask questions on the
Scottish PL Institute
Zulip stream #qbs
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Discrete model

. types denote
D.X: set of
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Discrete model

. types denote
DX set of

DX i={pu: X - W|uis (next slide)}
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Countably supported distributions

Support
A subset a weight function ;. : X' — W when /1 is 0 outside

WSS PX =Wr: X (tr>0) = z€5):Prop

The subsets supporting a weight function ;. are closed under intersections.
= There is a smallest supporting subset, called the of

W bEsupp o= {r e X|pxz >0}
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Discrete model

. types denote
DX set of

DV oi={p: X = W|uis }
={p: X = W|35 € PX.5 is countable}
= {1 : X — W|supp  is countable}
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Example distributions

Counting distribution
Counts the outcomes in a countable subset:

Pt ¥ - # ::(x.{ Z é):D

1 212 1
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Example distributions

Dirac
A point mass:

(NB: v : X Fd, =#(,.)
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Example distributions

Zero
No mass anywhere:

(NB: 0 = #4.)
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Discrete model

. types denote
DX set of

DX ={pu: X = W|uis }
By can be measured:
By =P

Measurement: weighted sum of all (supported) outcomes:

:DX,E:Bx FCelE] =
€
€ LMNsupp
NB: 1 : DX, E: Bx,S : Pepi X, S supports 11 Cey, [E] =3 cpn
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Example measurements

(NB: 1 : DX, E: Bx, S : Pyt X, S supports i Ce, [E] =3 cpn )
Counting distribution
counts supported outcomes

: Petnl X, L B "ge[ | =

£ S| = E NS has n € N elements:
' E N 5 is infinite: 00
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Example measurements

(NB: 1 : DX, E: Bx, S : Pyt X, S supports i Ce, [E] =3 cpn )
Counting distribution
counts supported outcomes

2 Petbl X, 2 B Fge[ ]:’ N ‘Z:

E NS has n € N elements:
E N 5 is infinite: 00

Dirac
detects given outcome:
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Example measurements

(NB: 1 : DX, E: Bx, S : Pyt X, S supports i Ce, [E] =3 cpn )
Counting distribution
counts supported outcomes

2 Petbl X, 2 B Fge[ ]:’ N ‘Z:

E NS has n € N elements:
E N 5 is infinite: 00

Dirac
detects given outcome:

, By Ces, | ]:{

Zero
measures every event as zero:

: B FCeO[ ]:0
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The discrete model validates the axioms

Exercise

:D FCell] =0

,C:Bx,pu:D F Ce[E] =Ce[EN ]+CC|: N C}

= sup Ce [E,]

i (Bx,9)%, D I—Ce[U
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Parameterised distributions

Kernel
~ Y from X to }': function i : X — D
Kernels are open/parameterised distributions.

Examples
Dirac and the counting distribution form kernels:

d_: X ~D #_ Pt X~ D

NB: This definition is : when we consider the full model, we will define kernels
as those functions internal to the model rather than the set-theoretic functions.
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Action of kernels on distributions

Kock integral

:DX,k: (DY) - $dpuk: D

This integral is implicit in many probability texts. It corresponds
to integrating against an arbitrary weight function or random variable.

Discrete model interpretation

j;d =AY e k()
=My k()

€supp
NB1: we write /(75 1) = /(r)(y) for the uncurried function.
NB2: 1 : DX,k (DY), 5 Petl V', S supports Ffd :k.z ()
€
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Weak Disintegration Problem (non-standard terminology)

Input: distributions ;. : DO, v : D
Output: kernel /:: © ~ X such that: » = §d
Such a of v w.r.t. ;. provides an ‘explanation’ of an observed
distribution v € DX in terms of a given distribution on parameters ;. € DO. | use the

term ‘explanation’ because it explains how the parameters transform into observations.
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Weak Disintegration Problem (non-standard terminology)
Input: distributions ;. : DO, v : D
Output: kernel /- : © ~ X such that: » = §d

Example disintegration
For n € N, write Fin»n = {0,...,7 — 1}. For countable ', write # = # . : D
Here is a disintegration of # € D ((Fin2)¥ (D) w.rt. # € D (Fin2):

1
=ur: 1 ' =~
(13 /) = {Otherwise: . Indeed:@d#) = e§12# Je(by 1) = k(05 £) + k(L5 1)

: Fin (n + 1) — Fin 2 function
so can take only one value: 0 or 1

=1=#
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Sub-type of probability distributions

Sub-types
Given type X and = : X F ¢ : Prop, take the sub-type and the coercion as follows:
{z: X|p} C t{x: Xlp} Fcasty =
we values in X that satisfy © to the sub-type:
'kM: 't or— M] '-M: PE{o}r—M
L LftM : {o: X|p} It cast(liftM) = M

The axiom implies that lift M lifts M along cast. Moreover:
A{r e X|p} Flift(casty) = {r € Xl|p} b @[z casty]

i.e., the lifting is unique and elements in the sub-type satisfy
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Sub-type of probability distributions

Magnitude and probability distributions
:DX F||p]| = Ce[X]: W PX :={peDX]|||ul =1} I :=[0,1] :== {w € Wjw < 1}

Event probability

:PX,E: By Pr| ]:zlift(Ce[ ]):I

cast

Stochastic kernel

ow Y from X to Y': function X' — P
NB: in the these distinctions and rules amount to pure pedantry. This
pedantry will pay off in the
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Lifting Dirac and Kock

Lemma
Dirac kernels 6 _ : X — DX lift along cast:

.4
F 6. = ((;e[ ] =1 so we can overload: o= lcast

Kock integrals of stochastic kernels by probability distributions lift along cast:
:PX,k: (P ) = CC;ﬁ(cast )(d) cast( )[ ] =
P x 1) L
so we can overload: cast X (cast o)l = lcast

(DY) x (DY) — D

$
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Discrete Giry monad [Michéle Giry’'82]

Proposition
The triple (D, (L,gﬁ) forms a monad over Set:

Corollary
The triple (P,é_,gﬁ) forms a monad over Set.
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Weighted average

Lebesgue integral

Integration is the raison d'étre for distributions:
DX, f W I—Jd W

In the

S €supp

As usual, replace supp ;. by any countable supporting set:

DX, f: W, S :PX, S supports /i - ![d :Z( )-(fx)
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Weighted average

Expectation
To emphasise that some /: is a probability distribution, we will use the notation:

PX, W R OE []::[d(cast )W

When calculating, however, we will usually use | and implicitly cast any probability
distribution to its corresponding distribution.
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Booleans

Boolean type
The simplest kind of distinguishing outcomes:

I'-M:B '+ Ny ' Ny
I' - if M then N7 else Ny :

B = {True, False}

Iverson bracket
Lets us replace Boolean propositions with arithmetic expressions:

:BF [0 = (if hthen 1else0) : W

For example:
:Byw, v : WEifbthenwelsev = [b] - w + (1 = [0]) -
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Simplest probabilistic model

Bernoulli kernel
Single trial succeeding with the given probability:
= True :
= False: 1-—
For example, for a payoff of 10 units if the trial succeeds then the expected payoff is:

B:low—B Bp = Ab.

1 1 10 5
B gt []-10] = § 10+ (1= §) 0= 03
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Events as functions

Proposition
Membership testing induces an isomorphism between events and Boolean propositions:

(€):Bx =B
Its inverse sends each Boolean property to the set of outcomes satisfying it:

FM:B

ceviEr | e Nlerh =l e Xlor = True)

Characteristic function

represents an event as weight functions: /©: By - [—€ E]: W

By the above proposition, every (internal) {0, 1}-valued weight function is the
characteristic function of some event, namely, the inverse image of 1.
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Measurement through integration

Lemma
We can replace event measurement by integration of characteristic functions:

.DX,F: By k- Ce[E] = | udr) [z € ]

We can deduce properties for Ce [—] and Pr [—] from those of the Lebesgue integral.

Notation:
I'p:D I'o: XFM:B

T+ Ce [M] = Ce[{r € X|M}]: W

and similarly for Pr.., [M].
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Language of probability & distribution (recap)

type of /
DX type of / over
PX C DX sub-type of over
By CPX type of : subsets we wish to measure
W type of : values in [0,00]

|',E Lebesgue integration and the expectation operation
Type judgements describe well-formed values/outcomes of a given type, e.g.:

:DX,E: By FCelL]: W

(measures weight Ce,, [/] of event /- according to distribution /)
Propositions describe properties of well-formed values/outcomes of a given type, e.g.:

F vy =12 : Prop :PX,E: By FcastPr[E] = Ce[E]

Y

(probability of event according to probability distribution is its measure)
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Lecture plan

Lecture 1: discrete model (now)

» Simply-typed probability

Lecture 2: the full model

ask questions on the
Scottish PL Institute
Zulip stream #qbs
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Simply-typed foundations for probabilistic modelling

Compositional building blocks for modelling

» Affine combinations of distributions

» Product measures (@) : DX x DY — D(X x V)

» Random elements and their laws (push-forward measure):
(A(py ) pe,) : DO X —D NB:

Dirac kernel 6_ :
Standard vocabulary

Kock integration

» Joint and marginal distributions % (DY)

Independence

>
» Distribution/probability preservation and invariance
» Density and absolute continuity

>

Almost certain/sure properties
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Simply-typed foundations for probabilistic modelling

Affine combinations of distributions
Product measures (©) : X (X x¥)

Random elements and their laws (push-forward measure):
(A c0) o) X

Standard vocabulary

» Joint and marginal distributions

» Independence

» Distribution/probability preservation and invariance
» Density and absolute continuity

» Almost certain/sure properties
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Affine combinations of distributions: scaling

Scaling distributions

W, ;DX F D
In the discrete model:
= A supp(w - /1) € supp
The function () :Wx DX — DX is a for the monoid (W, (-), 1):
:DXF1-p= LWy DX Fw-(vep) = (w-v)-

Integration and measurement are homogeneous w.r.t. scaling:

:W, /i : DX,k : (DY) I—f{;d( ) = .fﬁd
SW, DX, f W FJid( ) f = J
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Affine combinations of distributions: scaling

Normalisation

: DX, [|1]) # 0,00 b gy : |.ft(H . );P
measurement is homogeneous
!
Indeed: Hle - Hﬁ H = o llull = 1

Discrete uniform / categorical distribution

Random unbiased choice between finitely many options/categories:
i
P (X),5 #0F Us = gy P
In the discrete model:
es: L
Ug = Ao !
0

TR

S0 I : I—U{}:(S.
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Weights as distributions

Unit type
1:=10}

Proposition
The following two functions are mutually inverse:

b1 *w
v\/
(-d0)
Proof
Calculate: 1 :D1F = ()= A0).0() = and w: Wk w = A().w = w. [ |
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Internalising Lebesgue integration

Proposition
We can recover Lebesgue integration from Kock integration:

id x (=2 0)
DX x WY ——— DX x (D1)

-

W= — D1

Since measurement also reduced to Lebesgue integration, it usually suffices to prove
properties of Kock integration and derive them for Lebesgue integration and for

measurement.

Foundations for type-driven probabilistic modelling
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Affine combinations of distributions: addition

Summation

:(DX)', I countable =3 .,/ : D
In the discrete model:

> ie =AY e SUpp ) ¢ = U,/ supp

Affine and convex combinations
An combination is a countable sequence of weights w_: W',
It is when 3~ =1.

Bernoulli revisited

We can express the Bernoulli distribution as follows:
IEBp=1lift (- drrue + (1 — p) - IFalse) : PB
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Affinity of integration and convexity of expectation

Theorem (Multi-linearity)
The Kock and Lebesgue integrals and measurement are affine in each argument:

(DX wns W R X s YV A w )k =) wi-pd
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Weight arithmetic

This theorem, a working horse in probability, has several important consequences:

Proposition

The isomorphism D1 = W is a o-semiring isomorphism:

(Dl,z, (.)) S (WZ (-))

and (-) : W x DX — DX makes each DX into a W-module:

(Z >.:Z(.) ZE: :ze:.
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Convex combinations of probability distributions

Lemma
combination lifts to probability distributions:

W (PX)Y countable,z i=1F
€
Z = Iiftz - (casty) : P

Proof

Calculate:

‘Z - (cast )||—Z - ||cast H:Z 1=1 [ |

S
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Convex combinations of probability distributions

Corollary (Multi-convexity)
Stochastic Kock integration, expectation and measurement are convex:

(DX s W X 0w V) zwjﬁd(z IBLESY -j[Qd

S S

DX, we s W ks (X 0w B)Y > _wiﬁd O wi k)= -}'d

(D) W s W =1FEy o le =) wi-E, (]
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Product distribution

@v=A(r,y).(er) - (ry)  supp (@) = (supp /1) X (supp )

Example: counting distribution on product space
D

P (). T Pan () b #owr = s 0 #
Indeed: supp (#5 @ #7) =5 x 1= supp # 5« and for (1,1) € 5 x

(Fs @ #r) (1) = 1-1=1=Fsxr (1,)
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I'EM:D(X xY) L,o:X,y:YFK:D

Notation: -
Fl—j[}[M(d ,d )K::i;dM(k( ,u).K):D

Theorem (Fubini-Tonelli)
We can integrate products in any order:
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Applying Fubini-Tonelli

Theorem (Rule of Product)

We can factor out products:

Theorem
The product lifts to probability distributions:

:PXv i PY F (p®@v) = lift(cast p @ cast ) : P(X x V)
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Binomial distribution
the number of successful outcomes of n independent Bernoulli trials:

B, :low P(Fin(14n))  Bgp:i=dy:P(Finl)

Biinp = ﬁ(Bn @ Bp)(de,dd) (if bthendyy elsed.) : P(Fin (2 +n))
We can prove by induction on n, using Fubini-Tonelli and the Iverson bracket that:

Lk Fin(ln) b Pro| :k]:@)

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling



Push-forward distributions

Random element
in X\ any (internal) function:

Law
of a random element is the distribution:

: DO, o = ::} (dw)d,, .. : D
Example

Represent outcomes of die roll by D6 := {1,2,...,6}, and two rolls by D6 x D6.
The sum of the rolls is a random element:

(+): D6 x D6 — N

The law of the distribution # © # counts the number of configurations in which the
two rolls sum to a given number, e.g.: (# @ # ) : 1= 0,2 1.
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Push-forward distributions

Theorem (Law of the Unconcious Statistician)

Formulae for reparameterising integration and measurement:

o X0k X I—%d _fd(o)
o X f W I—Jd :J‘d(o)
(0 X9 BBy b CelF] = Ce[o™ [F]] = Ce [ow € £]
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Simply-typed foundations for probabilistic modelling

Affine combinations of distributions
Product measures (©) : X (X x¥)

Random elements and their laws (push-forward measure):
(A c0) o) X

Standard vocabulary

» Joint and marginal distributions

» Independence

» Distribution/probability preservation and invariance
» Density and absolute continuity

» Almost certain/sure properties
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Standard vocabulary: concepts concerning products

Let m; : [[;c; ¥4 — V4 be the i-th projection.

1 D(X x Y), :D(Hiel 1)

. the law of a projection:

:D<H i)l— i DX
el

Sometimes refers to any law of a r.e..

. the action of calculating a marginal distribution by integrating all
other components.

Exercise
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Independence

Pairing random elements

Independent random elements
The joint law is the product of the marginals:

: DO, o 0 I—L:=<(,)D(—X) G@)

More generally, for finite I:
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Independence

Example [Durett]

Model 3 independent coin tosses:
Toss := {Head, Tail} := Toss® = Uqoss ® Uoss ® Uross = P

The outcome of the it" coin toss is the random element 7; : () — Toss.
Consider the Boolean proposition in which the ith and jt" tosses (i # j) agree:

Sameij = AW.T = Tyl — B
LOTUS marginalisation Fubini
Calculate: ! 1 1
Pr[Sameqs] = Pr =] = Pr =] = [U dr) Pr |[r =
Samer] = Pr o f=ul=  Profe=u= U@ Prle=0)
=3 E{J[Head: ]+ 3 E{J[Tail: j=14+1=1
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Independence

Example [Durett]
Model 3 independent coin tosses:

Toss = {Head, Tail} := Toss® = Utoss © UToss @ Uross : P

The outcome of the it" coin toss is the random element 7; : () — Toss.
Consider the Boolean proposition in which the ith and jth tosses (i # j) agree:

Sameij = Aw.T; = TjWw: — B

Therefore /is, ., = Us and similarly /s, ... = Ug for # .
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Independence

w1, Sameig, and Same;3 determine 7o, 13, SO:

Pr [Samejow = True, Samejsw = True]

Fubini-Tonelli

!

= | Uqoss(d Pr Same , Do, = True, Same ,ba, = True
[ Orentarny | P (samens(ia,ta o) 13001, /2. 3) = True]

: Pr )[Samelg(Head, 2,03) = True, Samej3(Head, /2, h3) = True]
®U

(h2,b3)~(U®
11 py Samera(Tail, by, b3) = True, Sameys(Tail, by, b3) = True
2(2, 3)“’%U®U)[ 12( 2,03) 13( 2,/3) ]
1 1 1 1 1 1

and similarly we get % in all other cases.
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Independence

Example [Durett]
Model 3 independent coin tosses:

Toss := {Head, Tail} := Toss® := Utoss @ UToss @ UToss : P

The outcome of the it" coin toss is the random element 7; : () — Toss.
Consider the Boolean proposition in which the ith and jt" tosses (i # j) agree:

Sameij = AW.T = Tyl — B
Therefore /is, e, = Us and similarly /s, ., = Ug for i # j.  So:
(Sameiz,Samers) — Ugxg = Ug ® Ug = Sameis ® Sameis

So Samejs | Samejs even though their values depend on the outcome of the first toss.
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Distribution preservation

Distribution space (2, /)
A type () equipped with a distribution /. : D). Define analogously.

Distribution preserving function
: (O, 117) = (Qa, 119) is a function whose is the co domain distribution:

1= Q2 () =
DX is under [ : X — X when [ : (X, ) — (X, ) is dist. preserving.
Example
Consider the swapping function: swap = (A (7, 7). (y, 7)) : X x ¥ — ¥ x X. Then,
for each ;1 : DX, v : DY, swapping is distribution preserving function:
swap : (X X Y, 1@ 1) = (V x X0 )
swap is invariant in the case X = ) and ;1 =
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Density and scaling

Density
over X is any weight function /' : X — W.

Density scaling
We can scale a distribution by a density:

W DX fO ::!% (de)(f,7)-6,:D

© pf| # 1 even if |[1f| = 1.
235 24 g35

Scaling does not lift to probability distributions:

1 4

oo, = il

Foundations for type-driven probabilistic modelling
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Density and scaling

Density
over X is any weight function [ : X — W.

Density scaling
We can scale a distribution by a density:

WH DX SO 121; (dr)(f,2)-6,:D

Scaling does not lift to probability distributions: ||/ @ /|| # 1 even if ||| = 1.
Warning!

The types of distributions and densities over X in the model are close, but
still . They coincide on types, so people often confused them.

Types help us keep them separate.
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Density and absolute continuity

Having density

This concept has several names in the literature:

d
,v:DX, [ W |—<:1>::(: ® v) : Prop

C

> [ is the of /1 w.r.t.

> [isa of 11 w.r.t.

Absolute continuity
is w.r.t. » when /1 has a density w.r.t.
d
DX F (<) =1 :W.:d—:Prop
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Density and absolute continuity

Example
The is absolutely continuous w.r.t. the over
the same support. Indeed, it has these two densities:

res: L dU
: Phn ( )k(x .ﬁ),(x.{w | (|)|>:d#

These two densities are different, but they agree on the support, motivating the
following concept.
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Almost certain/sure properties

Almost certain event
is one we can assert without changing the distribution:

I'p:D I'o: X+HM:B
'+ p(dz) almost certainly M = [M] ® = 1 : Prop

For probabilities we define:

I'p:P r, FM:B
'k p(dx) almost surely M = (cast 11)(dx) almost certainly M : Prop
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Existence and almost-sure uniqueness of densities

Theorem (Radon-Nikodym)

For distributions, we characterise absolute continuity as follows:

Vi PXF (<) <= VE:Bx.Pr[E]=0 = Pr[£]=0

In that case, if /,9 = fl— then »(dr) almost surely [ =
In the , this characterisation amounts to supp /;» C supp
Example

For all countable X', we have:
Vi :DX . < #

Indeed, apply the Radon-Nikodym theorem, since supp # =

Constructively, direct calculation shows: (Ar.;0 1) = ;—#
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Simply-typed foundations for probabilistic modelling

Compositional building blocks for modelling

» Affine combinations of distributions

» Product measures (@) : DX x DY — D(X x V)

» Random elements and their laws (push-forward measure):
(A(py ) pe,) : DO X —D NB:

Dirac kernel 6_ :
Standard vocabulary

Kock integration

» Joint and marginal distributions % (DY)

Independence

>
» Distribution/probability preservation and invariance
» Density and absolute continuity

>

Almost certain/sure properties
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Lecture plan

Lecture 1: discrete model (now)

» Dependently-typed probability

Lecture 2: the full model

ask questions on the
Scottish PL Institute
Zulip stream #qbs
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Type dependencies

Example: Binomial kernels
We've defined, for every n € N, the binomial kernel:

F B, : 1o~ Fin(1+n)

We will now look at structure which allows us to view these as one

kernel internally:
:NFB, :low Fin(1+ n)

Foundations for type-driven probabilistic modelling
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Family model

Family over an indexing set

consists of a seqeuence ¥_= (V') ., of sets.
We call each set the

Family
a pair /"= (/, X)) consisting of (indexing) set / and a family .\'_over it.
Notation: /' =/ F X.

=1:/F

Example
The family 7 : N+ Finn has N as the indexing set. The fibre over 1 € N is:

Finn :={0,1,...,n— 1}
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Family model

Family over an indexing set

consists of a seqeuence V.= (V') ., of sets.
We call each set ', the

Family
a pair /' = (/, X)) consisting of (indexing) set / and a family \_over it.
Notation: /"= / F X.
=i:/F
Family map

(0, /) : (/= X)— (JFEY)is a pair of a function between the indexing sets and a
sequence of functions between the corresponding fibres:

— (f,: — )ic

Notation: ¢/ F /. We won't use these maps explicitly, but they are the foundation.
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Terms in context

Dependent elements 7 : [ = M
in family 7 : / are /-indexed sequences of elements from the corresponding fibres:
(M e Y))¢
Example
We have the elements:
:NFO,...,n—1:Fin

Subsumption
Every simple type becomes a family by ignoring the dependency through the constant
family, e.g., 7: /= Nand 7: /F 42 :N.
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Simple functions

Fibred exponential

of two families over the same indexing set 7 : / F X';, Y, is the family:
Family of distributions PR XG =
over a family 7 : / is the family:

FD
Its sub-family of fibred distributions:

FP
Both have a distribution:

Fé_:X,—D IF6_ X, — P
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Extension and dependent pairs

Extension

of indexing set / by a of the family 7 : / = ; is the (indexing) set:
[ =Yt = feoe sy oex]
€ € €

Notation: (7 : /,2: X)) =]]¢ and we'll often write 7, » instead of (7, 7).

Dependent pairs

F Lz Xy FY

NCEROEICENEN |
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Functions and kernels

Dependent functions
we identify a function / with a tuple (/ ») as usual:

)

: : : F
() =10

Dependent kernels i : [+ /@ (2 X)) ~»

are dependent elements:

Dependent kernels i : / =/t (0 X)) oo ) are similarly:
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Integration

Dependent Kock integral

Ju DXk ( X)) ,|—<{;d : D
and in the we define it for 7, 11, /i as in the simply-typed case:
(fukyyi= 3 s bloso) s W
€

Through the identification W = D1 and characteristic functions, we reduce dependent
Lebesgue integration and measurement to dependent Kock integration:

S DX (e )—>W|—Jid : W Ly DX, E By FCelE]: W
Id :Ze : Ce[]:Ze
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Random variables

Let R := [—00,00] be the extended real line.

Signed and unsigned random variable

in a probability space ({2, /) are random elements v : ) — R and o : () — W.
The and are unsigned random variables —* : R"" — W'
* = wmax(aw,0) = [a > 0] - o T = . —min(aw,0) = [a < 0] - |of
An unsigned r.v. o is when its Lebesgue integral is finite:
[ dpo < 0.
For a (signed) r.v. «, when either o™ or o is Lebesgue integrable, we define:
: DX, :R,[d +,[d T < ook [d ::[d +—[ -
A signed variable is when both its parts are Lebesgue integrable.

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling



Random variable spaces

Lebesgue integrability is a Boolean property:

:DX,0: X - RF integrable:=[d +<oo/\|d T <o0:B
Lebesgue spaces ensemble ‘ ‘
is the family:

, 0 [Lo0),p: PX; L,(X, )= { : — ﬁ} integrable}
Every fibre has a vector space structure and a norm (almost a Banach space!):
03 [1,00), s PG s L(X5, p) Elally = {/Ey [lof 7] : W

and the fibre 2 has an inner product (almost a Hilbert space!):
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Conditioning & la Kolmogorov

Situation: H
» Statistical model /1 : D Ohenation
(voters in the next election) —_— O
» Perfect statistic o : () — R \@ -
YE[“\ p=-1 pw,}a.f

(expected winning candidate)

?’Lrl-uﬁ “
» Observation /7 : () — Skakistic £ Stitistic
(poll voting intention) m“
Conditional expectation of o along / w.r.t
Statistic [/ : X — R that 'best’ approximates // o « staistically. Halmos and Doob's
definition: any measurement we make of /7 agrees with measurement of

s : — A, :Cl( R ), :Cl( s )I—
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Conditioning & la Kolmogorov

Theorem (Kolmogorov)

Every random variable has a conditional expectation:

:DO,H 2 QO — X, a0 L(Q, 1) F 36 L1(X, pey).0 = Efo|H = =]

Therefore:

Corollary (Internal conditional expectation)

In the we have a dependent function:
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Conditioning & la Kolmogorov

Conditional probability

of event is a conditional expectation of its characteristic function:

POH QO — X, E:Bo, B L1(X, ) B

Regular conditional probability
a kernel that agrees with the conditional expectation of the characteristic functions:

PO H O = Xk X o (O F
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Conditioning via disintegration

Kolmogorov's theorem does not ensure the existence of a regular conditional
probability, although the constructive, discrete, definition does.

Disintegration Problem (warning: conflicting terminologies in literature)

Input: probability distribution ;. : P, measurable map / : () —
induce law v/ == iy : P
Output: probability kernel /:: © o~ () such that: ;1 = $d
We call k£ a of ;. along
Proposition
Consider a probability kernel i : © ov (). TFAE:
» [ is a disintegration of ;. along H : () — ©);

P /: is a regular conditional probability kernel of 1 conditioned on
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Conditioning via disintegration

Fibred disintegration of ;2 : P ([ ], €2) (non-standard terminology and formulation)

a partial dependent kernel k : (7 : ©) o ()|, defined /14.-a.s., that disintegrates

along the first projection dep : (][, () —
P (H ) Jk it © ows O F k disintegrates fibres of ;1 :=

dep(DOHl (k)) =1lpu= %d deplV + Prop

In the we have an internal disintegration:
_ ( :P (H )) — {k:(0:0) o Q] |k disintegrates 1. along dep}

Dom(T ::{‘dep >0} =,

dep

ldep=116]

Foundations for type-driven probabilistic modelling
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Bayes's Theorem (adapted from Williams)

Let:
> )\ :P(X x ©) be a joint probability distribution.
> ;1 : DY, v : DO be distributions such that \ < /1 ® SN x o 2T
> w, = ddx : X x © — W a Radon-Nikodym derivative
Observation 1
> w, = [ v(dO)w. i (r,0) 1 X — W then: w, = &
— . . . _d
> wy = A [ p(dr)we g (0, 0) 0 © = W then: wy = 55
Observation 2 "
>0 2elod
Let: w. (— | H=—): X xO =W we (o | H=0):= v . s
otherwise: 0
|H=— 6 0w | = (= | H =0)©wr. Then:
\f=— = Pr [~/ = —] (Bayes's formula)
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Lecture plan

Motivation

Language of probability and distribution

>

>

» Discrete model
» Simply-typed probability
>

Dependently-typed probability

Lecture 2: the full model (now)

» Borel sets and measurable spaces
» Quasi-Borel spaces _
ask questions on the

Scottish PL Institute
» Integration & random variables Zulip stream #qbs

» Type structure & standard Borel spaces
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From histograms to measures

The model expresses
only.
g 2_3' 24 23¢
Also want distributions: /\ L |
» lengths 0§
» areas V
» volumes

Stop 4

Foundations for type-driven probabilistic modelling
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Continuous caveat

Theorem (Vitali 1905)

There is no reasonable generalisation of ‘length’ that measures all subsets of the real
line—there is no function )\ : PR — W satisfying:

[a,0] = (b—a) (s +[1]) = (WiZo ') = 2220 M om

(generalise length) (translation invariance) (o-additivity)
Takeaway
Br = PR as in the model excludes as distributions.

= need a different model
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Only measure subsets:
Borel subsets Br € PR
smallest containing all
€ Br _eBN ,beR
0 € Br C e Bg U n € BR (a,b) € Br
neN

(empty set) (complements) (countable unions) (intervals)

Examples

» Countable discrete subsets are Borel:

{r}= () (r—er+e)eBr , Icountable = I=| |J{i}
€050 el

» Any interval is Borel, e.g.: [a,0) = (a,0) U {a}
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Measure theory: generalise the worst-case scenario [

Measurable space M = (M, Bys)

set of € M equipped with a By C€CPM:
€ Br _ € Bg
0 e Br C € Br U n € BRr
neN
(empty set) (complements) (countable unions)
Examples
> Discrete spaces: 1" := (I,PI)
> Sub SCM ie, B {ENS|E € By} [0,00) <= R
ub-spaces: ie., = , e.g., [0,00) =
P S = (S, Bl N S) Su My €8
- € Hie[ B
» Products: BHieI M; =0 U 7Tl-_1 [BMZ] =0 XiEI i 3.‘] Ceountable 1. ,eg.: R?
el V5 ¢ J. J :Mi
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Measure theory

Borel measurable function f: M — K

function sending points to points and measurable subsets to measurable subsets:

fiM—K By>f '] & I€Bg

Examples
> (+)7() :R* - R
» |—|,sin:R—=R
» any continuous function R — R
. . =M
» any function out of a discrete space: ————
f:I—-M

Ohad Kammar <ohad.kammar@ed.ac.uk> Foundations for type-driven probabilistic modelling



Measure theory

Category Meas

Objects M: measurable spaces

Arrows f : M — K: Borel measurable functions

fM—>K g: K— L
id=Mx): M > M gof:(xg(fx): M—>M
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Measure theory

Categorical structure

Products, coproducts/disjoint unions, subspaces, projective and injective limits /
categorical limits and colimits are all fine.

Theorem (Aumann’61)

There are no measurable spaces of Borel subsets nor of measurable functions over R.
In detail, there are no o-fields 55, and Br_r such that, letting Bg and R — R be the
corresponding measurable spaces, the following functions are measurable:

> Membership testing:

c Ll Tr .
(€)= n.L. . ) iR x Br — {True, False}
otherwise: False

» Evaluation: eval := (A (/,7)./7):(R—R) xR —=R.

As a consequence, Meas is not Cartesian closed.
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Aumann’s Theorem: proof preliminaries

Recall the over a family of subsets U C P\, defined by transfinite
induction on wi + 1, the successor of the first uncountable ordinal:

U Y, AY CPX (o € wr)
s =u
S =cJAlreNAcuu |y (1<acuw)
el B<a
214 = U Z% (1 <~ a limit ordinal in wy)

B<y

¥ = [s4)° = {AE‘A e 23’} Al = 35U 0 AU
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Aumann’s Theorem: proof preliminaries

The Borel hierarchy looks like this in general:

U
=Y =Y =Y U = U
2 Y NS ¢ & ¢ ¢ R
A? AZ’ Agl QAZ Ag+1 CAG o(U)
e & G Te © e &oe @ S 7
I I I II oY, 15

For U := {(a,b)|a,b € R}, the hierarchy does not stabilise before w;:

7 Y Y = S04 =,
Qo ¢ C o ¢ C o 7 A
AY AY AY o AY Al o CAY, o(U) = Br
¢ U © ¢ U © ¢ U © ¢ U ¢ < U “ » U 7
IT; IL; II; IL, LR b IL;,
Rank of I/ € old

first step in which it appears: Rank := min {a < w;|4 € AY}.
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Aumann’s Theorem

Proof
Assume to the contrary there was some o-field providing a measurable space of Borel
subsets R such that membership testing is measurable:

(€) : R x Br — {True, False} NB: Brxss = o ([Br] % [Bsg])
Let o := Rank (€)™ ! [True] < wy, and find /' € Bg with Rank; > . Then:
a < Rank I = Rank (((e) o(—, 1))t [’I‘rue]) — Rank ((—, )1 ((e)—l [Tme]))
< Rank <(E)_1 [True]> =«

So a < a, a contradiction, and the postulated o-field cannot exist. A similar proof
replacing /' with its characteristic function proves eval cannot be measurable. |
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Some higher-order structure in Meas

Sequences
By generalities, (I — M) = [],c; M. For countable I, we use I — M for sequences.

Example
A sequence a_ : N — R is when Ve > 0.GN € N.Vm,n > N.|a, — a,| < €.
We can define the Cauchy property through quantification over countable sets:

Cauchy € Bnor Cauchy = ﬂ U ﬂ {a— e N= R||an — am| < €}
e€Q>0 NeNm,neN

measurability through
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